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Abstract 

Quantum computing is at the forefront of technological advancement and has the potential to revolutionize various 
fields, including quantum chemistry. Choosing an appropriate quantum programming language becomes critical 
as quantum education and research increase. In this paper, we comprehensively compare two leading quantum 
programming languages, Qiskit and PennyLane, focusing on their suitability for teaching and research. We delve 
into their basic and advanced usage, examine their learning curves, and evaluate their capabilities in quantum 
computing experiments. We also demonstrate using a quantum programming language to build a half adder 
and a machine learning model. Our study reveals that each language has distinct advantages. While PennyLane excels 
in research applications due to its flexibility to adjust parameters in detail and access multiple sources of real quantum 
devices, Qiskit stands out in education because of its web-based graphical user interface and smaller code size. The 
codes and the dataset used in the studies are available at https:// github. com/ wangp eihua 1231/ quant um- progr 
amming- platf orm.

Scientific contribution 

This article reviews key applications of quantum computing within quantum chemistry, including ground state 
energy calculations, quantum dynamics, and Hamiltonian learning. We present a comprehensive comparison 
of the PennyLane and Qiskit platforms, examining their respective advantages and limitations to inform their 
suitability for both educational and research contexts in the rapidly advancing field of quantum computing. 
Additionally, we demonstrate foundational quantum circuits and introduce quantum machine learning models, 
encouraging readers to explore interdisciplinary applications that bridge quantum computing with broader scientific 
inquiry.
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Introduction
Quantum computing is a cutting-edge field in computer 
science and physics that leverages the principles of 
quantum mechanics to perform computations at a scale 
and speed that traditional classical computers cannot 
match. It also can potentially solve complex problems 
intractable for classical computing methods [1]. At the 
heart of quantum computing lies the quantum bit or 
qubit, the fundamental unit of quantum information. 
Unlike classical bits, which can only have states of 0 or 1, 
a qubit can simultaneously have a state that is superposed 
of 0 and 1 [2]. This property enables quantum computers 
to explore many possibilities in parallel [3], making them 
exceptionally well-suited for solving complex problems 
that are infeasible for classical computers [4]. The 
quantum advantage refers to the exceptional capabilities 
of quantum computers in solving problems that are 
practically unsolvable with classical computers [5]. 
Quantum computers have significant long-term potential 
for widespread applications from logistics optimization 
to materials science, chemistry, and information security.

Quantum chemistry plays a pivotal role in various 
scientific domains, particularly in investigating and 
manipulating molecular systems at the atomic and 
electronic levels. Its application extends to studying 
biological macromolecular systems; it can model 
intricate phenomena such as enzyme catalysis [6], gene 
duplication, mutation, and drug-receptor interactions. 
Understanding the molecular and electronic structure of 
biological molecules at the quantum level is indispensable 
for designing enzymes, modifying enzyme structures, 
and synthesizing artificial enzymes. Moreover, quantum 
chemistry elucidates the mysteries of heredity and 
mutation [7], offering opportunities to regulate gene 
replication and mutation and obtain potential benefits 
for humanity. Additionally, the detailed examination of 
drug-receptor interactions through quantum chemical 
methods facilitates the design of new drugs with 
heightened efficacy and reduced toxicity [8], highlighting 
quantum chemistry’s broad and impactful applications in 
studying and manipulating biological phenomena.

Researchers and developers use quantum programming 
languages and frameworks to harness the power of 
quantum computers. Examples include PennyLane 
[9], Google’s Cirq [10], IBM’s Qiskit [11], NVIDIA’s 
cuQuantum [12], and Microsoft’s Q# [13] among others. 
These languages enable the design and simulation of 
quantum circuits, allowing researchers to develop 
quantum algorithms and experiment with quantum 
hardware. They are pivotal in advancing quantum 
computing research and practical applications.

IBM’s Qiskit [11] is an open-source quantum 
computing development framework that provides tools 

and libraries for working with quantum computers. It 
was developed by IBM and is designed to make it easier 
for researchers, developers, and enthusiasts to explore 
and experiment with quantum computing. Qiskit enables 
users to create, simulate, and run quantum programs on 
IBM’s cloud-based quantum computers. Users can also 
set up their local simulators for testing and development. 
Qiskit provides libraries and tools for quantum 
information science, including operations for quantum 
entanglement, quantum teleportation, and quantum 
error correction.

PennyLane [9] is an open-source quantum machine 
learning and computing software library. It was 
developed by Xanadu [9], a quantum technology 
company. PennyLane is unique because it focuses on 
the interface between quantum computing devices and 
machine learning frameworks, particularly popular 
libraries such as TensorFlow [14] and PyTorch [15]. There 
are several key features of PennyLane noted by Xanadu 
[9]: write-once, run-anywhere code; simulators and 
hardware in one place; an accompanying global research 
and coding community; built-in automatic differentiation 
of quantum circuits; the ability to perform machine 
learning on quantum hardware; and an “everything 
included” nature.

Our paper aims to comprehensively analyze and 
compare two prominent quantum computing and 
quantum machine learning frameworks, Qiskit and 
PennyLane, specifically focusing on their roles in 
education and research. We aim to provide valuable 
insights for educators, researchers, and quantum 
enthusiasts by evaluating the strengths and weaknesses 
of both frameworks in terms of accessibility, usability, 
educational resources, community support, and research 
capabilities. By examining their respective contributions 
to quantum education and their suitability for cutting-
edge research applications, we aim to assist readers in 
making informed decisions about which framework 
aligns best with their specific needs and objectives in the 
rapidly evolving field of quantum technology.

Applications of quantum computing in quantum chemistry
Quantum simulation
Quantum computing has a notable advantage in 
simulating the microscopic physical characteristics 
involved in quantum mechanics [16], a task that grows in 
complexity exponentially with system size in traditional 
computing systems. Simulating quantum systems [17], 
directly manipulating physical quantum devices in the 
laboratory to emulate other quantum systems, can 
conduct accurate modeling of molecular structures and 
chemical reactions in quantum chemistry, materials 
science, and drug discovery. The problem size in this 
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context is related to the simulated quantum system’s 
complexity, allowing for the computation of quantum 
dynamics and adaptability to large-scale systems.

Ground state energy calculation
The lowest energy state, also known as the ground state, 
is the state of a system with the lowest possible energy. 
Finding the ground state of a molecule involves solving 
the electronic Schrödinger equation. From the electronic 
ground state, we can determine the arrangement of 
the electrons in the molecular orbital that minimizes 
the system’s overall energy. Various methods, such 
as the Hartree–Fock [18], density functional theory 
(DFT) [19], and post-Hartree–Fock methods [20], have 
been employed for calculating electronic ground-state 
structures.

The goal of understanding the lowest energy states of 
molecular systems has driven innovative approaches 
in quantum chemistry simulations. A recent study 
introduced quantum HF/DFT-embedding algorithms as 
a promising avenue for scaling up electronic structure 
calculations in complex molecular systems [21]. An 
effective Hamiltonian construction incorporating mean 
field potentials to describe inactive electrons in an active 
space was outlined. Quantum HF/DFT-embedding 
algorithms can provide significant energy corrections 
to the HF and DFT calculations used as a reference, 
particularly in the strongly correlated limit and for 
systems the size of the oxirane molecule.

Quantum dynamics
Quantum dynamics [22] is the quantum counterpart of 
classical dynamics, which describes particles’ motion, 
energy, and momentum changes according to classical 
mechanics. In quantum dynamics, particles such as 
electrons and photons exhibit particle-like and wave-like 
behaviors. The time-dependent Schrödinger equation 
illustrates how the quantum state of a system changes 
over time, and its solution provides insights into the 
evolution of the quantum state. Quantum dynamics 
is essential for understanding various phenomena in 
quantum mechanics, including the behavior of electrons 
in atoms, the formation and breaking of chemical bonds, 
and the properties of materials at the quantum level.

Recent advancements in quantum computational 
algorithms, particularly in adiabatic and nonadiabatic 
quantum dynamics [23], have addressed the longstanding 
challenge of simulating molecular dynamics within a 
comprehensive quantum framework. These innovations 
aim to address the exponential scaling inherent in the 
simulation of many-body quantum dynamics, providing 
valuable insights into the potential of the quantum 

advantage for applications in quantum chemistry, 
quantum computing, and quantum information science.

Hamiltonian learning
Hamiltonian learning provides a validation framework 
for ensuring the accuracy of quantum system 
descriptions [24]. In an isolated n-qubit system, the 
system’s dynamics are typically governed by a known 
Hamiltonian [25]. However, when experimental 
observations exhibit significant deviations from 
theoretical predictions, this may indicate the presence of 
unaccounted interactions, such as an unidentified qubit 
coupling to the system or an unknown energy exchange 
pathway between the system and its environment. 
These discrepancies suggest potential inaccuracies in 
the assumed Hamiltonian, necessitating a systematic 
approach for validation and refinement. By leveraging 
expectation values, Hamiltonian learning enables a direct 
comparison between a theoretically defined Hamiltonian 
and the one inferred from experimental data, facilitating 
the identification of errors arising from (1) incorrect 
parameterization in the defined Hamiltonian or (2) 
operational imperfections in quantum devices.

Unlike conventional methods that rely on predefined 
Hamiltonians to predict quantum behavior [25], 
Hamiltonian learning operates in reverse—deducing the 
underlying Hamiltonian directly from observational data 
[26]. One approach to reconstructing the Hamiltonian 
involves expressing it in the Pauli basis and utilizing 
measurements on random states to generate a time-series 
dataset [26]. This approach exemplifies how Hamiltonian 
learning can uncover deviations from expected system 
dynamics, making it a crucial tool for validating and 
optimizing quantum models. By systematically refining 
theoretical descriptions and identifying errors in 
quantum devices, Hamiltonian learning contributes to 
the broader advancement of quantum computing and 
quantum information science.

Quantum machine learning and optimization
Given datasets and the cost function, quantum comput-
ers show potential in solving optimization problems by 
minimizing the predefined cost functions. Quantum 
algorithms such as the quantum approximate optimiza-
tion algorithm (QAOA) [27] aim to find optimal solutions 
for such problems. Additionally, if the target is to predict 
the target value or label of a dataset, quantum machine 
learning algorithms, such as the quantum support vec-
tor machine [28], which achieves exponential [29] and 
quadratic speed-up through Grover’s search algorithm 
[30], contribute to solving linear algebra problems more 
efficiently. Notably, various quantum algorithms, such 
as the variational quantum eigensolver (VQE) [31] and 
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quantum adiabatic algorithm (QAA) [32], play roles in 
addressing different problem domains, contributing to 
the diverse applications of quantum computing.

Nevertheless, quantum computing faces numerous 
challenges, particularly in algorithm design, which 
necessitates fundamentally different approaches from 
those used in classical computing. The advantages of 
current quantum computers are mostly demonstrated 
through specific, carefully chosen problems due to 
the limited error correction capabilities of quantum 
computers [33], which correct errors by using additional 
qubits among the limited number available.

Methods
The code for this study was written in Python using 
Qiskit (version 1.4.1) and PennyLane (version 0.41.0). 
The usage examples, half adder and machine learning 
were adapted from their official tutorials.

To compare the two quantum programming languages 
quantitatively, we conducted two types of analysis:

1. Line count analysis – measuring the total number of 
lines required to implement each example.

2. Dependency analysis – counting the number of 
required libraries.

Both analyses were performed on the two usage exam-
ples implemented in both languages, resulting in eight 
data points (2 × 2 × 2 = 8) for comparison and discussion. 
To ensure a fair comparison, we excluded non-essential 
code related to dataset analysis and visualization, retain-
ing only the core implementation necessary to execute 
the experiments.

Quantum programming languages: Qiskit and PennyLane
We analyze the difference between the two quantum 
programming languages in several respects: basic 
usage, visualization, implementation of tasks, available 
simulators and real devices, local environment 
construction, and official tutorials. Table  1 summarizes 
the contents that we introduce in this section. Table  2 
lists the line counts and the number of libraries required 
in the two usage examples described in the following 
sections.

PennyLane is user‑friendly in local environment 
construction
Building a local environment for basic usage of 
PennyLane is simple, as we can follow the official 
instructions and go through tutorials without problems. 
In contrast, beginners often face compatibility issues 
when learning Qiskit locally due to the multiple external 
libraries packaged with Qiskit. Sometimes, the Python 

Table 1 Summary of comparisons between Qiskit and PennyLane. Qiskit is more concise when using quantum gates and circuits, 
whereas PennyLane offers greater clarity

Concerning the use of measurement and simulators, PennyLane emphasizes computation speed and precision. Regarding visualization, Qiskit easily enables the 
visualization of the current circuit via Jupyter. In contrast, PennyLane often requires assistance from Qiskit for visualization purposes

Comparison Point Qiskit PennyLane

Quantum Circuits Treats circuits as objects combined using “compose.” Uses “wires” for qubits, represented by functions

Gate Usage More concise, e.g., “h” for the Hadamard gate Clearer naming, e.g., Hadamard() for the Hadamard gate

Measurement Methods Specifies the output during creation, offering more 
flexibility in design

Returns measurements via functions, such as probabilities 
and expected values

Environment setting Often encounter version and dependency problems Smoother with a few basic libraries

Tutorials It may have a steeper learning curve for beginners The gentler learning curve for those with some quantum 
knowledge

Visualization Integrates with Jupyter, a beginner-friendly platform Focused on quantum machine learning, not as intuitive 
as Qiskit

Real Devices IBM superconducting computers open to users for free 
with a beginner-friendly GUI

Utilizes quantum computers from several providers 
and the resources of users

Case Study: Half Adder More intuitive result representation Uses PauliZ prediction, requires familiarity with PauliZ

Case Study: Machine Learning Built-in functions, easy to implement Detailed user-defined functions suitable for research

Table 2 Quantitative analysis between usage examples in 
Qiskit and PennyLane. The line count excludes empty lines and 
comments

If multiple modules in the same library are separately imported in different lines, 
we only count as 1 library

Usage example Programming 
language

Line count Number of 
imported 
library

Half adder Qiskit 14 1

PennyLane 18 (qiskit format) 
12 (expected 
value)

1

Machine learning Qiskit 45 6

PennyLane 48 5
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version must be changed to align with the specific 
requirements of different packages. Some of these 
packages might require a higher version of Python, 
whereas others are compatible only with lower versions. 
Balancing these requirements often necessitates a 
middle-ground version of Python that can cater to 
both needs. This can be a significant difficulty for 
programming novices, as switching between different 
Python versions to meet varying compatibility needs may 
require using specific Python version management tools 
or implementing virtual environments. The complexity 
of managing these different versions adds a layer of 
difficulty to the learning process, especially for those just 
starting in the field.

PennyLane’s tutorial has a gentler learning curve 
for beginners
The Qiskit Textbook imparts foundational knowledge 
of quantum computation and programming. This 
comprehensive introduction covers the theoretical 
aspects of quantum computation and its practical 
implementation in Qiskit. For complete beginners, 
the learning curve might initially be steep. However, 
with detailed explanations and examples, progress may 
become smoother once the basic concepts become 
familiar. In contrast, PennyLane’s Codebook layout 
shows coding challenges on the left and textbook content 
on the right. After grasping the concepts from the right 
side, learners can address the challenges on the left. The 
learning curve might be gentler in this case for those with 
some quantum computing knowledge. This platform 
offers a direct introduction if learners are primarily 
interested in quantum machine learning.

Qiskit has better visualization and a graphical user 
interface
When used in conjunction with Jupyter [34], Qiskit pro-
vides visualization tools that are particularly beginner-
friendly. With just a single line of code, users can display 
features such as quantum circuit diagrams, statevectors 
(Fig. 1, Fig. 2a), and histograms for experimental results, 
allowing quantum computing newcomers to focus on 
learning without the distractions of visualization com-
plexities. PennyLane, however, is more focused on quan-
tum machine learning. While the statevector of a circuit 
in PennyLane can be displayed with a single line of code 
(Fig.  2b), its visualization capabilities are generally not 
as straightforward as those of Qiskit. For instance, visu-
alizing a statevector in PennyLane requires additional 
efforts to use modules such as Matplotlib, unlike Qiskit, 
which offers a more intuitive visualization with its LaTeX 
parameter.

IBM Quantum Composer provides a web-based GUI 
(Fig.  3) for building quantum circuits by dragging gates 
to the lines representing the quantum circuit. Tutorials 
are shown on the left, and the current quantum states 
are visualized at the bottom. In the tutorial for building 
a Bell state, the visualization updates dynamically with 
any circuit change. On the right side is the coding area, 
which shows the OpenQASM or read-only Qiskit code. 
The circuit can be run on a real quantum device by click-
ing the “Setup and run” button in the upper-right corner 
and selecting available quantum devices. For newcomers 
unfamiliar with programming languages, IBM’s Quan-
tum Composer is a user-friendly learning platform for 
understanding how gates and codes work.

PennyLane accepts various real devices from a broad range 
of quantum providers
To run Qiskit on real devices, IBM provides several 
superconducting unitary quantum computers to 
registered users with a free open plan. One 127-qubit 
system (ibm_brisbane) and three 7-qubit systems (ibm_
perth, ibm_lagos, and ibm_nairobi) are available to free 
users as of the date of Oct 15, 2023. Free users have up to 
10 min of system execution time per month.

Running PennyLane on real devices requires plugins 
such as Qiskit to gain access to external quantum devices. 
The PennyLane development team supports popular 

Fig. 1 Visualization of a statevector in Qiskit with the LaTeX 
parameter. The compact math formulation is friendlier to beginners

Fig. 2 Visualization of a statevector with complex numbers. The 2-qubit statevector is shown with four complex numbers in a set. a Visualization 
using Qiskit without parameter. b Visualization using PennyLane
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libraries, including IBM’s Qiskit, Amazon Bracket, 
Google’s Cirq, Microsoft QDK, Honeywell, IonQ, and 
Rigetti Forest. It is even possible to create quantum 
applications across different quantum platforms via 
PennyLane. The real quantum resources depend on the 
user when using PennyLane.

Qiskit is better for education to beginners, and PennyLane 
has the potential for teaching advanced quantum 
computing concepts
In Qiskit, while setting up a local environment and 
understanding the theoretical explanations in tutorials 
can be challenging, beginners may find it easier to 
construct quantum circuits using the web-based IBM 
Quantum Composer, allowing them to intuitively drag 
and drop gates. Additionally, Qiskit provides high-level 
functions that simplify circuit implementation and enable 
execution on real quantum devices through its open-
access plan. In contrast, PennyLane explicitly defines 
nearly every step in the workflow, allowing users to 
grasp fundamental concepts and understand the detailed 
operations performed at each computation stage, making 
it well-suited for research applications.

Usage examples: half adder
This case study examines experiments taught in the 
Qiskit textbook introduction course and contrasts its 
implementations in Qiskit and PennyLane.

The introduction course in the Qiskit textbook 
introduces the "half adder" operation, which adds 

two single bits and measures the result. This process 
educates learners on the NOT, CNOT, and Toffoli gates. 
After designing the quantum circuit and specifying the 
measurement in Qiskit, a simulator is needed to replicate 
the behavior of the quantum circuit on a real device. If 
learners aim to implement the half adder locally, the first 
obstacle is that simulator-related modules cannot be 
imported. Since the course does not address this issue, 
students must independently identify and rectify the 
problem. Only after installing the correct modules can 
the operation run smoothly.

In contrast, implementing the half adder in PennyLane 
allows the quantum function to return the expected value 
of the PauliZ prediction. This method differs from plat-
forms such as Qiskit, which offer a more intuitive result 
presentation. Specifically, for an input of (1,1) with the 
expected output ’10’, separate measurements on each 
qubit of the half adder results in the states |1⟩ and |0⟩. 
The PauliZ measurement represents these states as -1 and 
1, respectively. This outcome is attributed to the nature of 
the PauliZ gate: it keeps the base state |0⟩ unchanged and 
maps the state |1⟩ to −|1⟩. Therefore, while this measure-
ment method offers precision, understanding the results 
requires some familiarity with PauliZ, unlike the more 
straightforward interpretation in Qiskit.

Usage examples: machine learning
To analyze the advantages and limitations of Qiskit 
and PennyLane in machine learning, we referred to the 
tutorials [35, 36] and built two kernel-based quantum 

Fig. 3 Screenshot of IBM Quantum Composer after completing the tutorial “Create your first circuit walkthrough.” Building a quantum circuit 
with the online graphical user interface is intuitive. The code area on the right side reflects the contents of the quantum circuit and is updated 
with every change
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support vector machine (QSVM). The AqSolDB data-
set, a widely used curated solubility dataset from 
Sorkun’s study [37], was used in this study. The work-
flows used to build a quantum regressor on real data 
are similar in both tutorials, including data preparation, 
quantum circuit construction, kernel matrix genera-
tion, and validation (Fig. 4).

The data preparation process involves scaling the 
features to a range between 0 and 1, then splitting the 
dataset into training and testing sets. The AqSolDB 
dataset contains 9,983 molecules, each with 17 
molecular features. The QSVM regressor’s goal is to 
predict an unseen molecule’s solubility based on its 
features and the training data. We used a subset of 300 

compounds with 4 features to minimize training time 
for demonstration purposes.

The first component of the quantum circuit to calculate 
the kernel matrix is feature preparation, also referred 
to as feature mapping or state preparation. The scaled 
feature vectors are input into the quantum circuits. 
An overview of the feature mapping quantum circuit 
diagrams for Qiskit and PennyLane is shown in the upper 
parts of Fig. 5a and b.

 Rotational gates, such as RX and RZ, are commonly 
employed in feature preparation, with the rotation angles 
determined by the input features. In Qiskit, the fea-
ture preparation part (Fig.  5a) employs the ZZ feature 
map, where the x variables represent the input features 

Fig. 4 Workflow for building a quantum prediction model. Quantum circuits are reversible. Applying the inverse of an executed quantum 
circuit restores the initial quantum state. For each pair of molecules in the training data, one molecule’s features are fed into the quantum 
circuit, while the other molecule’s features reverse the quantum circuit. The probability of measuring the initial states represents the similarity 
between the two molecules. A classical optimizer then uses the resulting kernel matrix to construct the prediction model

Fig. 5 Visualization of quantum circuits in feature mapping step. a Four-qubit ZZ feature map in Qiskit. The x variables stand for the input features 
of the data. b The visualization of four-qubit AngleEmbedding circuits defined in PennyLane. The angles are derived from the first data record used 
in the usage example
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of a molecule. The cascades of CNOT gates entangle all 
qubits. PennyLane’s circuit visualization results, gener-
ated by the built-in pennylane.draw function, require the 
input angles from the data preparation step (Fig. 5b).

The complete quantum circuit comprises a feature 
mapping and its corresponding reversed counterpart. In 
reversible quantum circuits, applying all gates in reverse 
to a quantum state restores the initial quantum state. 
When the features are input into the forward feature 
mapping circuit, and the reversed feature mapping is 
applied using another molecule’s features, the probability 
of retrieving the initial state is measured. This process, 
called ComputeAndUncompute in Qiskit, measures 
the fidelity between the forward and reversed quantum 
circuits. Fidelity, ranging from 0 to 1, indicates how 
closely the forward and reversed circuits match, thereby 
measuring similarity between the two molecules. The 
similarity between all pairs of molecules in the training 
set is aggregated to form the training kernel matrix. The 
testing kernel matrix is constructed from the fidelity 
between each testing molecule and all the training 
molecules.

Classical optimizers, such as support vector machine 
(SVM), based on the training kernel matrix and target 
values (solubility) to maximize the training accuracy. 
Finally, model performance is validated using the testing 
kernel matrix to assess the classifier’s ability to predict 
the solubility of unseen molecules.

In summary, Qiskit wraps several trivial procedures in 
quantum machine learning into functions that users can 
readily call. For beginners, it is much easier to understand 
the meaning of each line of the code and build a workable 
classifier in a short time. On the other hand, PennyLane’s 
tutorial describes building almost everything in detail 
when constructing a quantum regressor. This might 
benefit experienced users by allowing them to learn 
all the adjustable parts and customize their prediction 
models.

Limitations of this study
Quantum programming languages continuously 
evolve, with new versions addressing existing issues, 
introducing additional modules, and enhancing usability. 
For example, PennyLane can utilize the Qiskit plugin to 
achieve similar statevector and circuit visualizations. 
Additionally, experienced users may find it relatively 
easy to switch between platforms as needed. Third-
party libraries built on these frameworks may extend 
functionality or simplify usage by providing higher-level 
abstractions.

Our analysis is primarily based on official tutorials, 
which may not fully represent all possible use cases. 
While we have tried to quantify our comparisons, 

certain aspects remain qualitative, introducing potential 
bias. To mitigate this, we included an evaluation by 
graduate students new to quantum computing, ensuring 
a fair comparison of the learning experience. However, 
individual learning styles and prior knowledge variations 
may influence the results.

As demonstrated in the usage examples of kernel-
based quantum machine learning, reducing the number 
of molecules and features is often necessary to achieve 
affordable training times for tutorials, which may 
sacrifice the accuracy of the resulting prediction models. 
This trade-off arises because simulating quantum circuits 
on classical computers requires significantly more time 
and memory than classical machine learning methods. 
However, this challenge can be addressed with real 
quantum computing. While current quantum devices 
may experience errors due to hardware limitations, 
quantum error mitigation techniques have been 
developed and can be readily applied using Qiskit and 
PennyLane. As hardware continues to improve each year, 
the future of quantum computing in machine learning 
looks promising.

Conclusion
Comparing these two programming languages, Qiskit 
is better for quantum education. It wraps numerous 
intricate procedures into easily callable functions, 
enabling beginners to quickly comprehend every line 
of code and construct operational quantum circuits 
quickly. IBM’s Quantum Composer is a noteworthy 
feature offering a web-based graphical interface. This tool 
allows students to craft quantum circuits by dragging and 
dropping gates. For those unfamiliar with programming, 
it offers a clear view of the workings of various quantum 
gates and circuits.

In contrast, PennyLane is better for research 
applications. While Qiskit offers streamlined solutions, 
PennyLane’s quantum machine learning tutorials 
delve deeply into every detail of building variational 
quantum classifiers. This explanatory depth allows 
seasoned researchers in quantum machine learning 
to fully grasp all tunable aspects of the programming 
language, empowering them to customize models to their 
requirements. This profound flexibility is an outstanding 
tool for researchers interested in in-depth study and 
model fine-tuning.

Users can decide between these two quantum 
programming languages based on their needs and 
proficiency levels. Qiskit and PennyLane are premier 
choices in today’s quantum computing domain.

Abbreviations
DFT  Density functional theory
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GUI  Graphical user interface
HF  Hartree–Fock
QAA  Quantum adiabatic algorithm
QAOA  Quantum approximate optimization algorithm
QSVM  Quantum support vector machine
SVM  Support vector machine
VQE  Variational quantum eigensolver
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