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Abstract 

Machine learning and artificial intelligence (AI) are actively applied in drug discovery, such as virtual screening, 
wherein appropriate molecular representation is critical. Conventional compound representations have limited use 
because they cannot encode the 3D spatial arrangement of atoms. An atom pair map (APM) represents a compound 
using a numerical matrix that encodes the physicochemical properties of all atom pairs and interatomic distances. 
In this way, APM inherently captures the 3D shape of a compound, whereas other conventional representations 
do not, such as fingerprints, SMILES, and molecular graphs. In this study, we performed a step-by-step evaluation of (i) 
how well APMs encode common molecular characteristics shared among ligands for target or phenotypic screening 
hits and (ii) how our APM-based attention model (APNet) compares with other conventional and advanced mod-
els. We demonstrated that APM and APNet consistently outperformed other representations and related models 
across various benchmarks.  

Scientific contribution This study demonstrates the utility of a novel molecular representation, 3D APM and a deep 
learning model based on it for virtual screening, suggesting that many other prediction models would also benefit 
from adopting APM. An open-source script to generate 3D APM is available at https:// github. com/ rimel ess/ APM

Keywords Fingerprint, Virtual screening, Structure representation, Deep learning, Drug discovery

Introduction
In silico drug virtual screening enables the efficient iden-
tification of hits, sparing the need for high-throughput 
screening against large compound libraries [1]. Virtual 
screening can be divided into two types depending on the 
accessibility of the target structure: ligand-based virtual 
screening (LBVS) and structure-based virtual screening 
(SBVS) [2]. LBVS captures similarities between known 
ligands. It requires different models for each target and 

becomes less effective for novel targets of few known 
ligands [3], whereas SBVS is applicable to a broader range 
of targets by identifying general features responsible for 
drug-target interactions [4]. Although 3D structures are 
not always available for certain targets, this limitation can 
be significantly alleviated by both experimental [5] and in 
silico modeling [6, 7].

Artificial intelligence (AI) has recently been actively 
applied to drug discovery. This is largely driven by the 
application of deep neural networks (DNN) to important 
problems such as target discovery, in silico drug 
screening, and the prediction of biochemical properties 
(e.g., ADME, toxicity) [1]. Virtual screening is one of the 
most rapidly advancing research areas. The first critical 
step of this process typically involves encoding the 
compounds and their respective targets as numerical 
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vectors. For example, Rifaioglu et  al. embedded 2D 
images of compounds using a 2D convolutional neural 
network (2D-CNN) [8], while Ragoza encoded the 3D 
atom density of compounds using a 3D-CNN [9].

Ideally, a vector representation of compounds should 
capture two critical pieces of information required for 
drug-target binding, i.e., the physicochemical properties 
and the spatial arrangements of atoms. To this end, 
compounds have been represented as fingerprints [10], 
molecular graphs [11], atom pair maps (APM) [12]. 
Fingerprints lack spatial information because they 
only encode the presence (1  s) or absence (0  s) of a 
compound’s substructures, not their geometric positions. 
A molecular graph typically treats a compound as a 
network of atoms, where each atom with its neighbors 
is encoded as a node vector, and all node vectors are 
eventually integrated into a single vector. There are 
several studies related to this, such as those by Lim [13], 
Zheng [14], and Tsubaki [15]. Molecular graphs still 
cannot capture the spatial information between distant 
atoms, although neighboring atoms are encoded during 
the generation step of the node vectors. In contrast, 
APMs do not suffer from such limitations because they 
encode all possible interatomic distances in a compound 
and the physicochemical properties of the corresponding 
atom pairs. In an APM, each atom pair is encoded as a 
combination of physicochemical properties and their 
interatomic distance (e.g., H-bond donor-hydrophobic 
at 7  Å, aromatic-acidic at 12  Å, etc.). The interatomic 
distances can be measured as actual 3D distances [16] 
or as the minimum number of edges in a molecular 
graph, as in the early versions of 2D-APM [12]. Here, 
we developed a more elaborate version of the APM (550 
bits) than the earlier versions (16–200 bits) [16]. Notably, 
we applied APM to protein targets by taking atom pairs 
around protein-binding sites or pockets. This aspect 
distinguishes this work from other related studies, which 
were based on amino acid/peptide compositions [17, 
18] and graph-based pocket features [9]. One advantage 
of our method is that it captures the spatial information 
of both compounds or targets, whereas the resulting 
features are rotation-invariant, making the APM highly 
compatible with any DNN or machine learning model.

Methods
Compound and protein datasets
The 3D atomic coordinates of all the compounds were 
obtained from PubChem [19]. Compound identifiers 
were unified, where necessary, by converting SMILES, 
InChI, or other identifiers using PubChem ID.

Protein 3D structures were obtained from the Protein 
Data Bank [5] and PDBbind [20]. We use the method of 

finding binding sites or pockets by Saberi et  al. [21]. In 
brief, a convex hull around the target protein was created 
using atomic triangles on the surface. The triangles serve 
as potential pockets and are further filtered and refined 
by identifying empty voxels and combining overlapping 
pockets. If the pockets were larger than a 10 × 10 × 10 Å3 
cubic unit, they were split into multiple smaller pockets. 
The pockets were then clustered using K-means, and the 
centroid of each cluster was selected. Pockets with more 
than 100 feature pairs were filtered out.

Compound‑target interaction dataset
The pre-processed dataset of BindingDB [22] by Yingkai 
et  al. [23] was obtained as compound-target interaction 
dataset. The dataset was divided into training, validation, 
and test sets. Additionally, the test set was further 
subdivided into seen and unseen categories based on 
presence or absence of the same targets in the training 
set. We filtered out compounds with highly diverse 
conformations or molecular weights that were too 
small or large, resulting in 51,579 compound-target 
pairs (Table 1).

The bioassay dataset was obtained from ChEMBL [24] 
by selecting assays of the ’binding’ and ’functional’ types. 
We used assays related only to Homo sapiens, Rattus 
norvegicus, Mus musculus, Bos taurus, Cavia porcellus, 
Sus scrofa, Oryctolagus cuniculus, Canis familiaris, Equus 
caballus, Ovis aries, Cricetulus griseus, Mesocricetus 
auratus, and Macaca mulatta.

The assayed compounds were labeled as active when 
pChEMBL > 6.0, where pChEMBL = −log10 (molar IC50, 
XC50, EC50, AC50, Ki, Kd, or Potency). Compounds 
with pChEMBL < 4.0 were considered inactive. We also 
filtered out compounds with contradictory labels for 
both active and inactive compounds in related assays.

A high-quality subset of PDBbind (ver.2020) was 
prepared for validation. Compounds with  Kd ≤  10–8 were 
labeled as active and those with  Kd ≥  10–4 were labeled 
inactive. This subset was also used to generate APMs for 
protein pockets.

Generation of the atom pair net (APNet) model
The APNet model consists of four modules, where the 
APMs of a compound and a target with one or more 
pockets were taken as input, and their interaction score 

Table 1 Datasets used for training, testing, and validation

Interaction Compound Target active decoy

BindingDB 51,579 42,212 714 28,161 23,418

PDBbind 1301 1121 504 806 495

ChEMBL 166,642 101,263 1212 127,592 39,050
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was given as an output (Fig. 1). First, the APM genera-
tion module generates APMs for the compounds and 
pockets. As a target protein may have one or more 
pockets, corresponding APMs are generated for each 
pocket.

Second, the Embedding module uses the APMs 
and generates a combined feature matrix (atom-type 
pair × distance bins) using CNN1d. We constructed 
two layers of CNN1d in which a one-dimensional 
kernel was applied across the distance bins for each 
pair. The feature matrix was then generated using 
batch normalization, a rectified linear unit (ReLU), and 
adaptive max pooling. This procedure was performed 
for all pockets and compounds.

Third, the attention weight between the compounds 
and pockets was determined in the Interaction module. 
The type pairs of APM were generated independently of 
each other, intending to capture potential dependencies 
among them. To this end, we employed BiLSTM 
rather than LSTM so that both forward and backward 
directions were considered. Because each pocket 
contributes differentially to compound binding, we 
adopted a multi-head attention algorithm to determine 
the weights of the different pockets.

Finally, the Task module uses the output of the 
interaction module to calculate the prediction score 
of the compound-target interaction via a two-layered 
perceptron, with ReLU as an activation layer and binary 
cross-entropy loss.

Results and discussion
Generation of atom pair maps (APMs)
APMs were generated as a numerical matrix, where 
each row and column represent the atom pair type and 
the binning of the interatomic distances, respectively. 
Atom pair types were defined by their pairwise 
combinations of physicochemical properties, such as 
hydrogen bond donors and acceptors, cations, anions, 
halogen, hydrophobic, and aromatics using SMARTS 
pattern (Additional file  1: Table  S1). If none of the 
features were assigned using RDkit, we assigned carbon 
(C) as hydrophobic; O, N, and S atoms as polar; and 
the remaining atoms as others. If an atom was assigned 
multiple features simultaneously (e.g., a carbon atom 
was assigned as both aromatic and hydrophobic), a 
single feature was assigned based on the feature priority 
(donors/acceptors > polar and aromatics > hydrophobic). 
When an atom acts as both a donor and an acceptor, a 
composite feature called donor–acceptor was indicated, 
resulting in 10 atom types. Interatomic distances 
were assigned to 10 exponential bins after inspecting 
the distance distribution sampled from > 1 million 
compounds in our dataset (Additional file  1: Figure 
S1, Methods). Therefore, each APM consisted of a 
550-dimensional vector of 55 atom pair types × 10 
distance bins.

APM generation consists of three steps (Fig.  2): (i) 
using a 0’s APM matrix, (ii) designating 1’s for the cor-
responding pair type and distance binning for each atom 
pair in the APM, and (iii) applying Gaussian binning with 

Fig. 1 Generation of the APNet model. (i) Generation of APMs for targets (pockets) and compounds, (ii) embedding APMs for targets 
and compounds using CNN1d, (iii) bidirectional LSTM learns harmonized characteristics of elements of APMs, and (iv) the self-attention model 
is trained to determine the pocket weights
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a standard deviation of 0.5 to smooth values towards 
neighboring bins. When multiple atom pairs are mapped 
to the same type and distance bin, their counts are added 
cumulatively. Therefore, the sum of APM equals to the 
total number of atom pairs for the ligand or the pocket.

The APM as an alternative molecular representation
Next, we comparatively evaluated how the APMs can 
discriminate known ligands from non-ligands relative to 
other by different molecular representations. Six differ-
ent methods were compared including APM and other 
methods such as fingerprints (ECFP4/6 and MHFP6 
[25]), molecular graphs (graph2vec [26]) and ErG [27]. 
As a benchmark, we applied a simple similarity search 
and ligand-decoy (LD) set collected from BindingDB and 
ChEMBL. Initially, the total number of targets were 714 
and 1,212 in BindingDB and ChEMBL, respectively. In 
condition I, the targets of less than five actives & inac-
tives were filtered out, resulting in 179 and 421 targets, 
respectively. Next, we further removed similar active-
active pairs of Tc < 0.4 by ECFP4, the remaining 175 and 
405 targets were taken as condition II (Fig. 3A). The sec-
ond filtering was applied only to active-active pairs, but 
not to active-inactive pairs in order to make the evalu-
ation more stringent. For each target, we compared the 
similarities between the known ligands (L) and LD pairs 
based on the six different representations (Fig.  3B and 
C). Among the six methods, APMs best discriminated 

ligands from decoys (Fig. 3B). Notably, ligands with low 
similarities were better identified by APMs than other 
methods (Fig.  3C). The performances were moderately 
influenced depending on the tools for generating 3D 
compound structures, where APMs by Open Babel [28] 
show a moderately lower performance than by PubChem 
or RDkit (Fig. S2).

Further, we evaluated the APMs under LBVS condi-
tions using antibiotic screening and cytotoxic assay data 
by Wong et al. [29] as benchmarks. The antibiotic screen-
ing dataset consists of 39,152 compounds and their activ-
ity values (GR80), including 512 hits. The performance of 
the APMs was evaluated using equivalent random forest 
(RF) models and compared with that of ECFP and graph-
2vec. The cytotoxic effects of the same compounds were 
measured in three cell lines (HepG2, HSkMC, and IMR-
90 cells), where the hit criteria were set as previously 
reported [29]. The model was trained using 80% of the 
dataset; the remaining 20% was reserved for independent 
evaluation. We performed 20 iterations of random split-
ting for the training set in an 8:1:1 ratio, where the data 
were used for training, validation, and testing, respec-
tively. We selected the top 10 out of the 20 models in the 
validation dataset and further evaluated them against the 
reserved set. To ensure robustness, the entire process was 
repeated ten times with varied random seed. The APM 
consistently showed superior performance across all 
four evaluations in predicting bioassay hits for antibiotic 

Fig. 2 Steps in generating atom-pair maps (APMs) a Feature extraction from a compound or the target pocket of a protein (e.g., diphenhydramine). 
b Utilizing Gaussian binning on the distance between the extracted feature pairs to distribute values to the corresponding bin and its neighboring 
bins. c Formation of the final APM



Page 5 of 10Ryu and Kim  Journal of Cheminformatics           (2025) 17:70  

potency and cytotoxicity compared to the other repre-
sentations (Fig.  4). In most cases, the APM was signifi-
cantly better at predicting assay hits than graph2vec or 
ECFPs. These results indicate that the APM may enhance 
hit predictions in phenotypic bioassays.

Prediction performance of the APM
To validate the utility of the APM, we compared the 
performance of different combinations of models and 
molecular representations. We used the training and 
test datasets from BindingDB and used PDBbind and 
ChEMBL for validation. In order to avoid overlap, com-
mon data were filtered out among training, test and 
validation. Additionally, evaluation was conducted in 
two ways, seen and unseen, depending on whether the 

training and the test sets shared the same targets or not, 
respectively.

First, we constructed four models that used the same 
RF algorithm but only differed in their molecular rep-
resentations as input (Table  2). Accordingly, it provides 
an objective evaluation of their relative performance. 
The APM showed a slightly better performance in both 
seen and unseen tests using BindingDB (Table 3, Fig. 5). 
Moreover, the APM consistently outperformed the other 
representations in our validation using the PDBbind and 
ChEMBL datasets.

Second, we constructed a deep learning (DL) model 
called APNet using APMs as the input and compared 
it with four other DL models as benchmarks: DBN 
[17], drugVQA [14], GNN [15], and AttentionSite [30] 
(Table  2). Overall, APNet consistently demonstrated 
the best performance across BindingDB, PDBbind, and 

Fig. 3 Performance comparison of the six different molecular representations in discriminating active ligands from inactives using a similarity 
search. Evaluation scheme of the similarity search using the six molecular representations. a The scheme of filtering steps for preparing 
the benchmark dataset for similarity search. b The performance for the targets of 5 or more actives and inactives (Condition I) and c the targets 
after filtering structurally similar active-active pairs (Tanimoto coefficient < 0.4 by ECFP4) (Condition II). The performance was measure as AUROC 
where active-active pairs were regarded as positives, and active-inactive pairs as negatives. The similarity was measured by Tanimoto coefficient 
for ECFP4/ECFP6 & MHFP6, weighted Tanimoto coefficient for APM (i.e. Ruzicka similarity), cosine similarity for graph2vec and the modified Tanimoto 
similarity for ErG as in the original study. [27]. (* p < 0.05, ** p < 0.005 and *** p < 0.0005 by t-test)
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ChEMBL, except for the seen case of BindingDB (Table 3, 
Figs. 5–6). APNet showed a relatively better performance 
with the unseen case than the seen case in nearly all the 
cases tested, suggesting that APM-based models may be 
less affected by overfitting than the other models. APNet 
was superior to the AutoDock Vina docking model [31] 
for PDBbind and ChEMBL. Moreover, using PDBbind 
as a benchmark, the APM-based models (RF_APM 
and APNet) evidently outperformed all the other mod-
els, which is likely to include fewer false positives than 

BindingDB or ChEMBL. We also checked the influence 
by the number of bins for RF and APNet. Overall, 10 bins 
generally show a good performance particularly for the 
unseen case (Figure S3).

Third, we further validated APNet by comparing it 
with two other DL models, AttentionSite and DBN. 
Nine screening datasets for the main protease of SARS-
CoV-2 were used as benchmarks, which were obtained 
from PubChem Bioassay (Assay#1,409,579, #1,409,585, 
#1,409,595, #1,409,599, #1,409,613) [32] and the literature 

Fig. 4 Calculating the average of the precision-recall curves of APM and the other representations (graph2vec, ECFP4, and ECFP6) using antibiotic 
efficacy and toxicity bioassay datasets as benchmarks. PR curves were generated by taking the average of 10 iterations of the models × 10 
repeats = 100 evaluations. The reserved assay dataset (20%) was used as the benchmark. PR curves using a antibiotic assays and cytotoxic assays 
using the b HepG2, c HSkMC, and d IMR-90 cell lines
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Table 2 Characteristics of the prediction models

Ligand type Target type Ligand embedding Target embedding Model

RF_ECFP ECFP(0,2,4) AAC, DAC, TAC ECFP(0,2,4) AAC, DAC, TAC RF

RF_graph2vec Graph sequence graph2vec Structure2vec
(doc2vec base)

RF

RF_APM APM APM APM APM RF

DBN ECFP(0,2,4) AAC, DAC, TAC ECFP(0,2,4) AAC, DAC, TAC Logistic regression + MLP

GNN Graph sequence GNN(basic) CNN2D + attention MLP

drugVQA smiles distance map LSTM + attention CNN2D + attention MLP

AttentionSite Graph Graph GCN GCN LSTM + attention

APNet APM APM CNN1D CNN1D LSTM + attention

Table 3 Performance of the models on the validation databases

Boldface text indicates the best-performing model. Italic text indicates the second best-performing model

Test Validation Summary

BindingDB PDBbind ChEMBL

seen unseen seen unseen Mean Std

RF_ECFP4 0.907 0.760 0.621 0.735 0.714 0.747 0.104

RF_gnn 0.971 0.568 0.591 0.551 0.490 0.634 0.192

RF_graph2vec 0.978 0.728 0.689 0.774 0.736 0.781 0.114

RF_APM 0.988 0.764 0.857 0.841 0.803 0.851 0.085
DBN 0.898 0.649 0.534 0.739 0.646 0.693 0.136

GNN 0.973 0.862 0.601 0.497 0.510 0.689 0.216

drugVQA 0.956 0.887 0.577 0.573 0.514 0.701 0.204

AttentionSite 0.972 0.884 0.650 0.797 0.687 0.798 0.134

APNet 0.946 0.910 0.762 0.801 0.733 0.830 0.093

Fig. 5 Comparative performance of APMs and APNet. The AUROC values of these models were benchmarked against other random forest 
and deep learning models on BindingDB for the seen and unseen protein targets
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[33–35]. Ligands are classified to active or decoy against 
SARS-CoV-2 main protease as reported in assays and lit-
erature. All methods employed different but related DL 
models; however, the main difference lies in the repre-
sentations of the ligands and targets. APNet is based on 
APMs, but the other two models used graphs or ECFP/
amino acid compositions (Table  2). The results showed 
that APNet outperformed the two other models in both 
AUROC and AUPRC in eight of the nine benchmarks 
(Fig.  7). Considering these results, APM and APNet 
consistently improved the identification of true ligands 

or assay hits relative to conventional representations or 
alternative models, respectively.

Conclusions
In this study, we propose a novel molecular 
representation, the APM, which has not been widely 
adopted in rapidly advancing DL-based models. 
Molecular representations such as SMILES, ECFPs, and 
graphs have been frequently used for DL-based models, 
but they only encode 1D or 2D information. APMs have 
the advantage of encoding physicochemical properties 

Fig. 6 Validation of the performance of APMs and APNet using external datasets. a AUROC scores in PDBbind. b AUROC for seen and unseen 
targets in ChEMBL after training using BindingDB

Fig. 7 Model validation via COVID-19 main protease inhibitor screening. Assessment of the predictive performance of the models on PubChem 
Bioassay Collections
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and spatial atomic arrangements in 3D. An ideal 
molecular representation should capture key features 
shared among various elements (e.g., a set of ligands) 
and be generally sufficient to allow discoveries, such as 
novel scaffolds. We hypothesized that APMs have the 
potential to improve current molecular representations 
and performed comparative evaluations using various 
benchmarks. Using a simple similarity search, we showed 
that the APM was superior to other representations (e.g., 
graph2vec and ECFP) in discriminating true ligands. We 
then constructed APNet, a DL model based on APMs, 
and demonstrated that it consistently outperformed 
other related methods across the benchmarks we used. 
The results suggest that many other prediction models 
may benefit from adopting the APM as their molecular 
representation, even without algorithmic modifications. 
Moreover, the APM is also computationally cost-effective 
because it has a numerical vector of size 550, which is 
manageable even with a mid-sized computing facility.
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