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Abstract 

Organic anion transporting polypeptides (OATPs) are membrane transporters crucial for drug uptake and distribu-
tion in the human body. OATPs can mediate drug-drug interactions (DDIs) in which the interaction of one drug 
with an OATP impairs the uptake of another drug, resulting in potentially fatal pharmacological effects. Predicting 
OATP-mediated DDIs is challenging, due to limited information on OATP inhibition mechanisms and inconsist-
ent experimental OATP inhibition data across different studies. This study introduces Heterogeneous OATP-Ligand 
Interaction Graph Neural Network (HOLIgraph), a novel computational model that integrates molecular modeling 
with a graph neural network to enhance the prediction of drug-induced OATP inhibition. By combining ligand (i.e., 
drug) molecular features with protein-ligand interaction data from rigorous docking simulations, HOLIgraph outper-
forms traditional DDI prediction models which rely solely on ligand molecular features. HOLIgraph achieved a median 
balanced accuracy of over 90 percent when predicting inhibitors for OATP1B1, significantly outperforming purely 
ligand-based models. Beyond improving inhibition prediction, the data used to train HOLIgraph can enable the char-
acterization of protein residues involved in inhibitory drug-OATP interactions. We identified certain OATP1B1 residues 
that preferentially interact with inhibitors, including I46 and K49. We anticipate such interaction information will be 
valuable to future structural and mechanistic investigations of OATP1B1.

Scientific contribution 

HOLIgraph introduces a new paradigm for DDI prediction by incorporating protein-ligand interactions derived 
from docking simulations into a graph neural net framework. This approach, enabled by recent structural break-
throughs for OATP1B1, represents a significant departure from traditional models that rely only on ligand features.
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Introduction
Organic anion transporting polypeptides (OATPs) are a 
family of membrane proteins responsible for transporting 
a wide range of drugs and endogenous compounds into 
the liver and other pharmacologically relevant tissues 
(e.g., kidneys and intestines) [1]. To accommodate the 
variety of substrates processed by these tissues, OATPs 
exhibit a high degree of promiscuity [2]. This promiscu-
ity gives rise to intricate intermolecular interactions and 
elaborate regulatory networks that can profoundly influ-
ence drug efficacy and toxicity. The US Food and Drug 
Administration (FDA) recognizes hepatic OATP1B1 and 
OATP1B3 as common participants in clinical drug-drug 
interactions. As such, FDA guidance suggests preclini-
cal investigations to identify how a new drug candidate 
interacts with these hepatic OATPs [3].

Understanding the transport and inhibition mecha-
nisms of OATPs and other membrane transport proteins 
is particularly challenging since they are inherently diffi-
cult to isolate for structural determination and functional 
characterization. In the past two decades, however, com-
putational molecular modeling techniques have greatly 
expedited and improved functional characterization 
efforts like transporter inhibition prediction [4]. There 
are two types of computational molecular models typi-
cally implemented to predict whether a ligand (drug) will 
inhibit a transporter protein: ligand-based and structure-
based models [2].

Ligand-based models relate the physical structure and 
chemical properties of a ligand to its empirical trans-
porter activity. Ligand-based models are trained on 
experimental datasets consisting of large numbers of 
ligands, learning trends between physicochemical ligand 
properties and transporter activity. Trained models can 
then predict how a new ligand will interact with the 
transporter of interest through extrapolation of these 
learned trends. For OATP inhibition prediction, many 
ligand-based models have been developed with good 
predictive power [5–8]. However, ligand-based models 
generally provide limited mechanistic insight, and may 
only use a small fraction of the physicochemical informa-
tion relevant for determining inhibition or transport [2]. 
It is well known that interactions between specific OATP 
residues and ligands play a role in ligand-transporter 
behavior [9], thus we hypothesized that leveraging such 
information in addition to traditional ligand-only infor-
mation may enhance model prediction performance.

Structure-based models contain information about 
the bound protein-ligand complex, typically involving 
features like the binding interface energy or molecular 
docking simulation scores [10]. Recently, attention has 
been drawn toward interaction-based modeling, which 
considers more intricacies of the protein-ligand binding 

interface. For example, the innovative incorporation of 
interaction-information into classification models by 
Aniceto et  al. [10] has shown great promise in predict-
ing urease inhibitors. Interaction data, such as the type 
and number of interactions in the protein-ligand binding 
interface, enabled a promising 80% precision in their ure-
ase classifier model and offered substantial insight into 
residue-importance in urease inhibition [10]. Information 
encoded in interaction-based models may be obtained 
from experimentally resolved protein structures, either 
experimentally elucidated in complex with the ligand, 
or complexed via molecular docking simulations. It is 
also possible to obtain interaction data from computa-
tionally predicted structures (e.g., structures predicted 
by AlphaFold), though this is not recommended due to 
observed performance losses [11, 12]. The recent publi-
cation of multiple high-resolution cryo-EM structures 
of OATP1B1 (apo, holo, inward-facing, outward-facing) 
greatly facilitates the obtainment of high-quality interac-
tion data between OATP1B1 and its ligand partners [9].

We present a novel approach to integrate both ligand- 
and structure-based modeling into a single holistic model 
that greatly expands upon the predictive power of con-
ventional classifier models: HOLIgraph (Heterogene-
ous OATP-Ligand Interaction Graph Neural Network). 
HOLIgraph employs state-of-the-art graph neural net-
work (GNN) technology to correlate ligand activity to 
ligand physicochemical and topological properties, pro-
tein sequence, and detailed protein-ligand interaction 
information obtained via rigorous docking simulations.

In this work, we performed protein-ligand docking 
simulations between the cryo-EM structures of inward- 
and outward-facing OATP1B1 and 222 ligands from an 
experimental dataset by Karlgren et  al. [5]. This dataset 
designated these ligands as either inhibitors or nonin-
hibitors of OATP1B1. We incorporated both inward- 
and outward-facing OATP1B1 conformations since 
this transporter is believed to function according to the 
rocker-switch alternating access mechanism, where it 
moves from an extracellular-facing position (i.e., out-
ward-facing) to a cytosol-facing position (i.e., inward-
facing) as it transports molecules [9]. We reasoned that 
docking ligands to both conformations would better sam-
ple ligand interactions occurring throughout the trans-
port process. Protein-ligand complexes produced by the 
docking simulations were used as structural data to train 
HOLIgraph. Data representations used in HOLIgraph 
encompass quantitative descriptors of binding interac-
tions (distance, angle, donor, acceptor, etc.; Table  S5), 
expanding upon the coarse-grained protein-ligand inter-
action features leveraged in the earlier interaction-based 
models for urease inhibition [11]. HOLIgraph notably 
outperformed conventional ligand-based models with 
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over 90-percent balanced accuracy. Beyond this impres-
sive performance, HOLIgraph is built upon highly inter-
pretable data representations that offer a wealth of insight 
into potential inhibition mechanisms.

Results
HOLIgraph (Fig.  1) was designed to capture intri-
cate intermolecular interactions between ligands and 
OATP1B1 to enhance inhibition prediction accuracy. Just 
as ligand-based models utilize specific data representa-
tions (e.g., physicochemical ligand properties), HOLI-
graph requires specific structural data representations. In 
brief, these HOLIgraph representations augment tradi-
tional physicochemical ligand representations with high-
dimensional descriptors of both (a) ligand position with 
respect to the protein topography, and (b) interactions 
between the ligand and protein.

Docking simulations reveal OATP‑ligand interfaces
Interaction interfaces between OATP1B1 and ligands 
were produced via protein-ligand docking simulations. 
Using cryo-EM structures of both the inward- and out-
ward-facing conformers of OATP1B1 [9], we conducted 
thorough docking simulations to generate one thou-
sand docked poses (i.e., protein-ligand complexes out-
putted by the docking simulations) for each of the 222 
ligands experimentally characterized by Karlgren et  al 
[5]. Details on the docking workflow are provided in 
the Supplemental Information and Fig. S2. Interaction 
data (e.g., interaction distances, angles, atoms involved) 
were extracted from each docked pose by the Protein-
Ligand Interaction Profiler web tool [13]. Expanded 
protein-ligand interaction data is provided in the Sup-
plemental Information (Figs. S5-S11).

Fig. 1  HOLIgraph encompasses a ligand graph (in orange, where the nodes are the atoms, and the edges are the intra-ligand bonds) and a protein 
graph (in blue, where the nodes are amino acids) connected by protein-ligand interaction edges (magenta). For example, protein-ligand 
interactions are shown for an OATP1B1 complex with Simeprevir, a known OATP1B1 inhibitor (A, left). The simplified HOLIgraph representation (A, 
right) corresponds to the interactions involving the 4-isopropylthiazole group of Simeprevir. The HOLIgraph data representation includes detailed 
features (B) of each atom and amino acid (AA) node, intra-ligand bond edge, and protein-ligand interaction edge. HOLIgraph features are further 
detailed in Tables S6-S9. The HOLIgraph architecture (C) involves processing input feature data through multilayer perceptron (MLP), neural 
message passing convolution (NNConv), heterogeneous graph convolution, projection, pooling, and graph classifier layers to predict the probability 
that a given ligand is an inhibitor or noninhibitor of OATP1B1
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HOLIgraph outperforms conventional ligand‑based 
models
To establish a baseline for OATP1B1 inhibitor prediction 
performance prior to developing HOLIgraph, we trained 
ligand-based classifiers on two widely used molecu-
lar representations: extended-connectivity fingerprints 
(ECFPs [14]) and physicochemical descriptors generated 
by RDKit [15] (Fig. 2A). These simple ligand-based mod-
els had modest performance, with a mean balanced accu-
racy of approximately 80 percent.

To preliminarily gauge the added value of protein-
ligand interaction information, we developed simple 
classifiers using protein-ligand interaction fingerprints 
(PLIFs) (Fig. 2B). These features captured detailed inter-
actions between ligands and OATP1B1 in its inward- and 
outward-facing conformations. All models were evalu-
ated with standard metrics including accuracy, preci-
sion, and recall (5-fold cross-validation results in Tables 
S11-S14). Among the classification algorithms tested, 
XGBoost consistently delivered the best performance for 
both ligand- and interaction-based models.

Building on these findings, we proceeded to develop 
three GNN models: a ligand-based GNN (Fig.  2A) and 
two interaction-based GNNs, collectively referred to as 
HOLIgraph, for the inward- and outward-facing confor-
mations of OATP1B1 (Fig.  2B). HOLIgraph achieved a 
median balanced accuracy above 90 percent, outperform-
ing the ligand-based GNN, which achieved 86-percent 

balanced accuracy. Further comparisons revealed that 
HOLIgraph, when using the outward-facing conformer, 
significantly outperformed both the ligand-based and 
simple interaction-based classifier models (Fig. 2C). This 
highlights the distinct advantage of incorporating inter-
action features into GNN architectures. In contrast, the 
ligand-based GNN did not exhibit similar improvements 
over conventional classifiers, underscoring the critical 
role of protein-ligand interaction data in enhancing pre-
dictive performance. Detailed performance metrics for 
the GNN models are presented in Table S15.

To confirm that HOLIgraph was truly learning from 
underlying structure-activity relationships rather than 
fitting to random noise, we performed a y-randomization 
test. In this test, the inhibitor/noninhibitor class labels 
were randomly shuffled while maintaining the same 
training procedure and model architecture. We evaluated 
model performance over 20 independent runs, yielding 
accuracy and balanced accuracy values near 50%. Moreo-
ver, F1 scores, precision, and recall also presented near-
random levels (Table  S16). These results reinforce that 
the original labeling scheme—and not chance correla-
tions or overfitting—drives the predictive performance of 
HOLIgraph.

Interaction data enable deeper insights
We identified critical interactions that differentiate 
inhibitors from noninhibitors, which showed promising 

Fig. 2  HOLIgraph outperforms ligand-based and interaction-based methods using XGBoost when trained on docked poses of outward-facing 
OATP1B1. (A) Feature encodings of ECFP and RDKit physicochemical descriptors generated numerical vectors and tensors for use in classification 
(e.g., XGBoost) and Ligand-GNN models, respectively. (B) Protein-ligand interaction fingerprints (PLIFs) obtained from docked poses were encoded 
into numerical vectors and tensors for use in classifier models and HOLIgraph, respectively. Feature engineering and model optimization are further 
detailed in the Supplemental Information. (C) Box plots displaying the distribution of scores for ligand-based (ECFP, RDKit) and interaction-based 
XGBoost, Ligand-GNN, and HOLIgraph (left to right). Interaction-based models for the inward- and outward-facing OATP1B1 conformers were 
evaluated independently (blue and pink, respectively). Mann–Whitney U p-values with Bonferroni correction indicated by asterisks (*: p< 0.05, **: p< 
5e-3) show that HOLIgraph (applied to the docked poses of the outward-facing OATP1B1 conformer) improves balanced accuracy scores compared 
to all XGBoost models. Comprehensive performance results are reported in Tables S11-S15.
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agreement with recent experimental findings [9]. Figure 3 
(left) highlights the frequency of any interaction type 
occurring with each orthosteric site residue (Y352, F356, 
and F386) identified by Shan et  al. [9] through cryo-
EM and functional investigations. The orthosteric site 
(orange in Fig. 3) was defined by Shan et al. to be the set 
of OATP1B1 residues experimentally observed to partici-
pate in interactions with all four ligands for which they 
solved OATP1B1-bound cryo-EM structures. For docked 
poses with the outward-facing OATP1B1 conformer 

(Fig.  3A), inhibitors were observed to have significantly 
more interactions with F356 than noninhibitors (p<5E-
3). Similarly, the distribution for the inward-facing 
OATP1B1 conformer (Fig.  3B) showed each phenylala-
nine residue in the orthosteric site (F356 and F386) inter-
acted more frequently with inhibitors than noninhibitors 
(p < 5E−4).

We also visualized interaction distributions for any 
residues in the experimentally determined opportunis-
tic sites defined by Shan et al. to be groups of residues 

Fig. 3  Protein-ligand interaction profiles highlight significant differences in OATP1B1 interaction sites between inhibitors and noninhibitors, 
including five residues not previously identified as positions of interest. Probability of any type of interaction occurring between noninhibitors 
(white) or inhibitors (grey) and OATP1B1 residues in the previously identified orthosteric (orange) and opportunistic (green) sites, and in novel 
sites of interest for the outward-facing (A) and inward-facing (B) conformers. Probabilities independently normalized for each class. Error bars 
indicate 95% confidence intervals. Mann–Whitney U p-values with Bonferroni correction indicated by asterisks (*: p<0.05, **: p<5e-3, ***: p<5e-4). 
Orthosteric, opportunistic, and novel site residues are highlighted in the cryo-EM structures of the outward-facing (C) and inward-facing (D) 
conformers (PDB 8HNB and 8HND, respectively (9)). Structures are displayed in three views, from left to right: top-down (from the extracellular side), 
front (CTD left, NTD right), and bottom-up (from the intracellular side)
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important for the binding of only certain ligands (i.e., 
much more ligand-specific than orthosteric sites) [9]. 
The ligands interacting with these opportunistic sites 
in the cryo-EM structures obtained by Shan et  al. [9] 
were bilirubin, Simeprevir, estrone-3-sulfate (E3S), and 
2’,7’-dichlorofluorescein (DCF). It is worth noting that 
opportunistic site residues participating in interactions 
indicative of ligand class (i.e., inhibitor, noninhibitor) 
differ greatly between the inward- and outward-facing 
OATP1B1 conformers. For inward-facing poses, resi-
dues F224, I353, and I579 participated in significantly 
more interactions with inhibitors than with noninhibi-
tors. For outward-facing poses, residues T42, P220, and 
I353 were observed to have significantly more interac-
tions with inhibitors than with noninhibitors.

Beyond interactions with orthosteric and oppor-
tunistic sites, we observed that inhibitors interacted 
with five additional residues considerably more than 
noninhibitors (Fig.  3, magenta). In particular, I46 and 
K49 were seen to interact more often with inhibitors 
than noninhibitors in both the outward- and inward-
facing conformers. These findings illustrate the utility 
of interaction-based methods for elucidating intricate 
interaction patterns (Fig. S5-S10) that can inspire both 
predictive models and further mechanistic studies. 
For instance, OATP1B1 inhibitors were seen to have 
significantly more hydrophobic interactions with resi-
dues T42, A45, I46, K49, and P220 than noninhibitors 
(Fig. S5-S6). This observation aligns with the findings 
of Shan et  al. [9], highlighting the hydrophobic pack-
ing and constriction network(s) involved in the bind-
ing, transport, and/or substrate-dependent inhibition. 
Moreover, comparison of interaction profiles between 
the inward- and outward-facing conformers yields sug-
gestions for future mechanistic studies (e.g., functional 

mutagenesis studies to investigate the importance of 
positions I46 and K49 in OATP1B1 inhibition).

Ablation study confirms importance of full interface
To comprehensively investigate whether interactions out-
side of the orthosteric site contribute essential predic-
tive information, we conducted an ablation study using 
the best performing HOLIgraph model—that for the 
outward-facing OATP1B1. Specifically, we trained three 
variants of the model. First, we included only orthosteric 
site residues in the protein graph, as well as data only for 
ligand interactions involving the orthosteric site residues 
(orange in Fig.  4). Similarly, we assessed a variant that 
included residues and interaction information for the 
orthosteric and opportunistic sites (Fig. 3, green). Lastly, 
we compared these to our full HOLIgraph model, which 
includes all binding interface residues (Fig. 4, magenta). 
As shown in Fig. 4, exclusion of non-orthosteric/oppor-
tunistic site residues resulted in significantly reduced 
performance across all metrics (p <  0.05 for accuracy, 
p < 5E−4 for all others). These findings indicate that cap-
turing the entire binding interface, rather than focusing 
solely on experimentally-identified residues of impor-
tance, is critical for maximizing the predictive power of 
HOLIgraph.

Comparison between docked poses and Cryo‑EM
To assess agreement between cryo-EM structures [9] 
and docking-derived protein-ligand interactions, we 
compared their residue interaction profiles (Fig. S11). 
Specifically, we examined two ligand-bound cryo-EM 
structures of OATP1B1: an outward-facing conforma-
tion with Simeprevir (PDB: 8HNH) and an inward-facing 
conformation with estrone-3-sulfate (PDB: 8HND) [9]. 
After tabulating each experimentally observed inter-
molecular interaction, we compared them to those 

Fig. 4  Excluding non-orthosteric residues markedly diminishes HOLIgraph performance across multiple classification metrics. Box plots show 
accuracy, precision, recall, F1, balanced accuracy, and AUC for the outward-facing HOLIgraph model trained with only orthosteric (orange), 
orthosteric and opportunistic (green), or all residues (magenta). Removing non-orthosteric/opportunistic residues significantly impairs 
performance, underscoring the importance of the complete binding interface for accurate inhibitor prediction. Statistical signficance was assessed 
via Wilcoxon tests followed by Holm-Bonferroni correction (*p < 0.05, ***p < 5E−4)
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generated from our docking workflow. Notably, the sin-
gle best docking pose with Simeprevir (best in terms 
of interface binding energy) reproduced 70% of these 
experimentally observed interactions. The 30 best dock-
ing poses for estrone-3-sulfate captured all of the experi-
mentally observed interactions, and the 30 best docking 
poses for Simeprevir captured all but one of the experi-
mentally observed interactions. Thus, by expanding our 
analysis to include a small ensemble of docked poses, we 
were able to more thoroughly capture experimentally 
validated interactions. Moreover, this broader consid-
eration revealed several OATP1B1 residues that have not 
yet been characterized but may be critical for binding. 
These findings support our hypothesis that ensembles 
of docked poses can uncover a wider array of potential 
interactions that may be missed by static experimental 
structures. However, because these conclusions currently 
rely on a limited number of ligands for which cryo-EM 
data are available, their broader applicability remains to 
be established.

Discussion
Machine learning techniques have been extensively 
applied to predict interactions between drugs and 
OATPs, primarily being used in binary classifications 
(e.g., inhibitor/noninhibitor). Previous models for pre-
dicting OATP1B1 inhibition [5–8, 16, 17] concentrated 
on drug attributes and protein sequence features, with 
no information on protein structure or protein-ligand 
interactions. The exclusion of insightful, structure-
based features in past models is likely due to the histori-
cal lack of experimental OATP structural information. 
Enabled by the exciting recent publication of several 
experimentally solved OATP1B1 structures (apo, holo, 
multiple conformers) [9], we developed the structure- 
and interaction-based HOLIgraph model to predict 
OATP inhibition. We have engineered a heterogeneous 
graph representation for the OATP1B1-ligand binding 
interface-based on intricate patterns in docking-derived 
protein-ligand interactions-in our novel HOLIgraph 
model. The improved predictive performance of HOLI-
graph compared to ligand-based approaches supports 
our hypothesis that model augmentation with protein 
interaction data enables significant gains in predictive 
power and reveals important structural determinants of 
OATP1B1 inhibition. Though not the focus of this work, 
we found that HOLIgraph also performs well in predict-
ing the inhibition constants (Ki) for human carbonic 
anhydrase II (CA2) inhibitors (i.e., a regression task; see 
the “Beyond OATP1B1” section in the Supplementary 
Information), suggesting that it can be applied more 
generally.

Interaction‑guided hypotheses for inhibition mechanism
Recent experimental structures have begun to clarify 
the molecular mechanisms of OATP1B1, though some 
uncertainties remain. First, while kinetic studies have 
characterized competitive inhibition or suggested allos-
teric mechanisms for certain OATP inhibitors, exact 
allosteric sites have yet to be proven [1]. Thus, we allowed 
our ligand docking simulations to explore beyond the 
known major and minor binding pockets (e.g., trans-
membrane helices, transport channel openings), though 
we excluded the disordered extracellular regions (which 
had a mean B-factor of 82.64). We reasoned that this 
would also allow ligands to engage in potential allosteric 
interactions with OATP1B1. Despite the fact that we 
used a sizable simulation space during the docking, the 
30 most energetically favorable binding poses for each 
ligand were observed to occur within the main binding 
region seen in the cryo-EM structures (Fig. S11). These 
findings provide confidence in our docking workflow and 
the models developed from it.

Secondly, the conformational dynamics of OATP1B1 
inhibition are not well understood. For instance, it is 
unknown whether inhibitors block transport by directly 
preventing conformational changes required for the 
alternating access mechanism (e.g., outward- to inward-
facing conformational change) or by occupying a key 
binding site without interfering with the conformational 
cycle. Evidence from related solute carrier proteins sug-
gests that inhibition can involve conformationally pro-
hibitive mechanisms. For example, dilazep, a drug used to 
treat renal disorders, is known to occupy the central cav-
ity of hENT1, thereby blocking the outward-to-inward 
conformational change necessary for transport [18]. 
Because of uncertainty in the conformational dynamics 
of OATP1B1 inhibition, we developed distinct models for 
both the outward- and inward-facing conformations. The 
outward-facing HOLIgraph model performed best, sug-
gesting that key ligand interactions in the outward-facing 
state are influential in OATP1B1 inhibition.

Lastly, it is possible that some of the ligands explored in 
our study exhibit indirect OATP1B1 regulation. That is, 
OATP1B1 regulation not involving direct ligand interac-
tion with OATP1B1 (e.g., transcriptional regulation). We 
hypothesized that the ligand-only GNN would outper-
form the interaction-based HOLIgraph model for ligands 
with such confounding interactions, as the ligand-only 
model excludes protein-specific information. To explore 
this, we assessed both Ligand-GNN and HOLIgraph 
performance for ligands known to interact with other 
transporters, enzymes, and nuclear receptors expressed 
in the common experimental cell line HEK293 (Fig. S4). 
This did not reveal any significant trends and highlights 
the need for comprehensive, well controlled assays. Such 
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assays would provide datasets better suited for training 
mechanistically agnostic models to predict OATP1B1 
inhibitors. We provide additional discussion on the vari-
ability in available OATP1B1 kinetic data in the Supple-
mental Information, including rationale for sourcing data 
from a single, consistent study.

Docking derived interactions for both conformers
These docking-derived interaction data (main findings 
captured in Fig.  3) leads us to several hypotheses for 
analyzing orthosteric sites in future studies. First, we 
hypothesize that Y352 is more likely involved in general 
ligand coordination rather than specific inhibitor bind-
ing since it shows no significant interaction difference 
between inhibitors and noninhibitors for both OATP1B1 
conformations. Second, we hypothesize that F356 may 
serve a key role in stabilizing inhibitors to the outward-
facing conformation of OATP1B1 since noninhibitors 
are less likely to interact with F356 in the outward-facing 
conformation compared to inhibitors. Thus, we speculate 
that some inhibitors bind tightly to the central cavity and 
prevent conformational change from the outward-facing 
to the inward-facing conformation.

This study also affords some insight into residues not 
in previously identified opportunistic or orthosteric sites. 
Notably, I46 is a hydrophobic residue that participated in 
significantly more interactions with inhibitors than with 
noninhibitors (Fig. 3). As I46 is known to participate in 
hydrophobic packing above the central OATP1B1 bind-
ing cavity for only certain substrates [9], we hypothesize 
nuanced rearrangements of this hydrophobic packing 
may engage substrate-dependent cryptic binding sites. 
We suggest that interactions between I46 and some 
inhibitors may interfere with the hydrophobic packing 
required for cryptic binding site availability. Similarly, 
our results have drawn our attention to K49, an electro-
positive residue that generates a charged pair with D70, 
thereby creating an environment amenable to substrate 
translocation [9]. Shan et al. have shown that the K49 A 
mutation exhibits substrate-dependent inhibition, but 
that K49 does not directly interact with any of the sub-
strates they investigated [9]. We observed that K49 forms 
significantly more interactions with inhibitors than with 
noninhibitors (in both OATP1B1 conformers), leading 
us to suggest a potential substrate-dependent inhibition 
mechanism involving disruptive interactions with K49 
that prevents the electrostatic environment required for 
substrate translocation.

Conclusions
From these insights, we argue that HOLIgraph and 
interaction-based analyses enhance our ability to under-
stand OATP inhibition mechanisms, contributing to 

improved drug safety through better prediction of drug-
drug interactions. However, uncertainty in OATP inhibi-
tion mechanisms add to the complexities of predictive 
model development. These challenges necessitate further 
in vitro assays and highlight the need for advanced com-
putational methods to deconvolute nuanced data pat-
terns. By refining our models with emerging structural 
and functional data, we can anticipate more accurate pre-
dictive tools to advance the drug development process.

Methods
Data selection & labeling
Experimental inhibition data (Fig. S1) was obtained from 
Karlgren et al. for 225 ligands assayed against OATP1B1, 
OATP1B3, and OATP2B1 [5]. We focused only on 
OATP1B1 since the other OATPs do not yet have cryo-
EM structures available in both the inward- and outward-
facing conformations. Of these 225 compounds, 222 
were used in our workflow; we did not include 3 ligands 
due to conformer generation issues or obtainment errors 
(Table S2). We labeled compounds with reported inhibi-
tion percentages ≥50% as inhibitors (Class = 1), while we 
labeled those with inhibition percentages less than 50%—
including those with negative inhibition percentages—as 
noninhibitors (Class = 0), consistent with the original 
Karlgren labeling scheme [5]. This threshold aligns with 
the single, uniform experimental protocol used in the 
study and precludes labeling ambiguities introduced by 
including multiple data sources.

Data splitting for training & test sets
We adopted a drug-wise splitting approach to create the 
holdout test sets to ensure a robust evaluation of model 
performance. Twenty balanced test sets were created, 
each containing 10% of the total dataset, with an equal 
representation of inhibitors and noninhibitors. The 
remaining 90% of the data was used for training and 
cross-validation. Table S3 lists the ligands in each test set.

Structural modeling
Molecular docking was performed between the 222 
ligands and both the outward- and inward-facing con-
formers of human OATP1B1 (PDB IDs 8HNB and 
8HND, respectively [9]) using the Rosetta modeling 
suite (version 3.12) [19]. A more detailed overview of 
the Rosetta docking workflow can be found in the Sup-
plemental Information. To ensure a thorough sampling 
of the binding space, one thousand docking simulations 
were performed for each protein-ligand pair, resulting in 
1000 unique docked poses (protein-ligand complexes). 
For each docked pose, Rosetta reports the ligand-protein 
interface energy in Rosetta Energy Units (REU). This was 
used as a relative metric to rank the 1000 docked poses 
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for each single ligand-OATP conformer pair. Poses with 
the lowest energy scores (i.e., highest binding affinities) 
were considered higher quality [20].

Feature engineering
Two distinct feature sets were generated: traditional 
ligand-only molecular descriptors (i.e., ligand features) 
and protein-ligand interaction features. Two types of 
vectorized molecular representations, extended-connec-
tivity fingerprints (ECFP) [14] and RDKit physicochemi-
cal descriptors [15], were generated for each of the 222 
docked ligands. The Protein-Ligand Interaction Profiler 
(PLIP) [13] was used to generate interaction profiles 
(XML file format) for each docked pose. PLIP produces 
intricate features to describe each interaction present in 
a docked pose, including interaction type, distance, angle, 
donor and acceptor atom identifiers, etc. (Table S5).

Optimization with simple classification models
Prior to training the machine learning models, preproc-
essing steps were applied as detailed in the Supplemental 
Information. Several machine learning algorithms (see 
Supplemental Information) were trained using the pre-
processed data. Trained models were evaluated on hold-
out test sets. Multiple metrics were computed to assess 
model performance (Tables S10-S11), with area under 
the curve (AUC) representative of the class-weighted 
(i.e., balanced) accuracy score for binary classification. 
The number of optimal docking poses used in the HOLI-
graph model (30 poses) was determined during classifier 
optimization, as further detailed in the Supplemental 
Information, particularly Fig. S3.

HOLIgraph development and evaluation
HOLIgraph (Fig. 1) was constructed to capture the intri-
cate interactions between the proteins and ligands. The 
graph contains two types of nodes: amino acid residues 
and ligand atoms. Edges which connect the protein and 
ligand graphs are referred to as heterogenous and encode 
interaction descriptors. HOLIgraph was trained using the 
AdamW optimizer with weight decay. The OneCycleLR 
learning rate scheduler was used for adaptive learning 
rates. Mixed precision training improved computational 
efficiency. Binary cross-entropy with logits served as the 
loss function. Early stopping, based on validation loss 
with a patience of 5 epochs, prevented overfitting. Each 
model trained for up to 100 epochs or until early stop-
ping occurred. For each of the 20 data splits, a separate 
model was trained and evaluated on the correspond-
ing test set. Multiple metrics were calculated: accuracy, 
precision, recall, F1 score, balanced accuracy, etc. This 
thorough evaluation provided a robust understanding of 

HOLIgraph’s predictive capabilities. Supplemental Infor-
mation details model architecture in depth.
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