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Abstract 

The cytochrome P450 (CYP) superfamily metabolises a wide range of compounds; however, drug-induced CYP 
inhibition can lead to adverse interactions. Identifying potential CYP inhibitors is crucial for safe drug administration. 
This study investigated the application of deep learning techniques to the prediction of CYP inhibition, focusing 
on the challenges posed by limited datasets for CYP2B6 and CYP2C8 isoforms. To tackle these limitations, we 
leveraged larger datasets for related CYP isoforms, compiling comprehensive data from public databases containing 
IC50 values for 12,369 compounds that target seven CYP isoforms. We constructed single-task, fine-tuning, multitask, 
and multitask models incorporating data imputation on the missing values. Notably, the multitask models with data 
imputation demonstrated significant improvement in CYP inhibition prediction over the single-task models. Using 
the most accurate prediction models, we evaluated the inhibitory activity of approved drugs against CYP2B6 
and CYP2C8. Among the 1,808 approved drugs analysed, our multitask models with data imputation identified 161 
and 154 potential inhibitors of CYP2B6 and CYP2C8, respectively. This study underscores the significant potential 
of multitask deep learning, particularly when utilising a graph convolutional network with data imputation, 
to enhance the accuracy of CYP inhibition predictions under the conditions of limited data availability.

Scientific contribution
This study demonstrates that even with small datasets, accurate prediction models can be constructed by utilising 
related data effectively. Also, our imputation techniques on the missing values improved the prediction accuracy 
of CYP2B6 and CYP2C8 inhibition significantly.
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Introduction
Human cytochrome P450 (CYP) represents a family 
of enzymes with 57 isoforms that are responsible for 
the biotransformation of endogenous and exogenous 
compounds, including drugs and toxins, via oxidation 
and reduction. These membrane-attached haemoprotein 
enzymes are primarily found in the smooth endoplasmic 
reticulum and are predominantly associated with hepatic 
cells [1, 2]. About 15 isoforms belong to CYP families 1, 
2, and 3 (70–80% of all Phase I metabolisms of clinically 
used drugs) and are involved in the biotransformation of 
environmental chemicals (approximately 90%), including 
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66% of the metabolic reactions of chemical carcinogens 
[3]. The major isoforms that metabolise over 90% of drugs 
are CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, 
CYP2C19, CYP2D6, CYP2E1, and CYP3A4 [4, 5].

In clinical practice, patients are often prescribed 
multiple drugs or a combination thereof for treatment. 
Although this may represent a preferred clinical strategy, 
the administration of drug combinations may cause 
undesirable drug-drug interactions (DDI). As the risk 
of DDI increases, it can cause side effects and even 
increase the possibility of severe adverse effects. From a 
pharmacokinetic viewpoint, DDI occur when one drug 
alters the disposition of another co-administered drug, 
either increasing or decreasing its activity [6]. Therefore, 
inferring the possibility of DDI by understanding CYP 
inhibition activity is highly advantageous in the early 
stages of drug development to reduce the occurrence of 
underperforming drug candidates.

Currently, the availability of experimental data on 
chemical-CYP interactions is increasing, and many 
researchers have used computational approaches to 
predict or explore CYP-mediated metabolism and 
inhibition. However, it is difficult to accurately predict 
CYP450 inhibitors using structure-based techniques 
such as molecular docking and pharmacophore mapping 
because of the flexible conformation of CYP450 [7]. 
In contrast, machine learning is the most popular 
approach for quantitative structure–activity relationships 
(QSAR), and is widely used to predict CYP450 inhibitors 
[8]. Previous studies have attempted to predict CYP 
inhibitors using different machine learning approaches 
with varying accuracies [5, 9–12]. Considering the 
sequence and structural similarities of the binding 
sites in the CYP family [13], multitask models can 
simultaneously predict the inhibitors of different CYP 
isoforms to provide better predictive power [8]. Li et al. 
[7] constructed a multitask learning model using deep 
autoencoder neural networks for five major CYP enzymes 
(CYP1A2, CYP2D6, CYP2C9, CYP2C19, and CYP3A4) 
and concluded that multitask models tend to improve 
the performance compared to single-task models. Similar 
results were reported by Nguyen-Vo et  al. [1], who 
developed iCYP-MFE models that combine multitask 
learning with molecular fingerprint-embedded encoding. 
Their models improved prediction performance slightly 
over the Swiss-ADME and SuperCYP models. The latest 
study on multitask learning was conducted by Ai et  al. 
[8], who showed that their approach using a fingerprint-
based graph neural network architecture (named 
DEEPCYPs) can slightly improve their CYP inhibitor 
prediction over iCYP and SuperCYP models. While 
multitask learning can enhance the performance of CYP 
inhibitor prediction, most of the previous research has 

focused on only five major isoforms, and not on other 
related CYPs, such as CYP2B6 and CYP2C8.

The functions of these two isoforms are relevant. 
CYP2B6 is involved in the metabolism of approximately 
7% of clinical drugs, including the psychiatric drug 
mephobarbital, the antidepressant bupropion, the 
anaesthetic drugs profol and amiodone, the anti-cancer 
drug cyclophosphamide, and the anti-viral efarivens 
[4, 14]. In addition, both contribute to the metabolism 
of n-hexane and monoterpenes. CYP2C8 accounts for 
approximately 6–7% of the total hepatic CYP content and 
contributes to the metabolism of paclitaxel, amodiaquine, 
rosiglitazone, and flurbiprofen. Both also contribute to 
metabolising fatty acids [14, 15]. The U.S. Food and Drug 
Administration (FDA) on their guidelines encouraged 
CYP-based DDI studies for CYP2B6 and CYP2C8 in 2012 
and 2006, respectively; however, the measured inhibition 
data were limited due to these CYPs being added later 
than other major CYP isoforms [16, 17]. Indeed, the 
amount of experimental inhibition data for CYP2B6 
and CYP2C8 is severely limited in public databases, 
such as ChEMBL and PubChem. Building a predictive 
model for small datasets, such as CYP2B6 or CYP2C8, 
is challenging; the small amounts of data and imbalances 
tend to cause model overfitting or underfitting because 
of the small data scale and feature dimensions that are 
too high or low [18]. In addition, the inhibitory activities 
of many approved drugs against CYP2B6 and CYP2C8 
remain unknown. A comprehensive prediction of the 
inhibitory activity of approved drugs against CYP2B6 
and CYP2C8 can help identify potential inhibitors, 
which would be beneficial for ensuring their safety after 
marketing.

In this study, we constructed prediction models for 
CYP inhibitory activity on small dataset of CYP2B6 
and CYP2C8 using an extensive dataset obtained by 
comprehensively collecting and integrating public data 
on CYP inhibition. Furthermore, we leveraged these 
prediction models to predict the CYP inhibitory activity 
of the approved drugs on CYP2C8 and CYP2B6 and 
identified compounds with potential CYP inhibitory 
activity.

Results and discussion
Dataset construction
A total of 170,355 data points of IC50 values for CYP1A2, 
CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, 
and CYP3A4 were obtained from ChEMBL [19], 
PubChem [20], and Rudik et al. [21]. After curation, we 
constructed a high/low labelled dataset consisting of 
12,369 compounds with a threshold of pIC50 = 5  (IC50 
= 10  µM); further details of the curation process are 
provided in the experimental section. Table  1 provides 
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an overview of the dataset, and the final datasets are 
available in Supplementary Information 1. Notably, 
all CYP datasets, except for CYP2B6 and CYP2C8, 
contained over 3,000 compounds with a balanced 
distribution of inhibitors and non-inhibitors. However, 
CYP2B6 and CYP2C8 had significantly smaller datasets 
(462 and 713 compounds, respectively), with a lower 
proportion of inhibitors. An additional challenge arises 
from the imbalance between high and low activity levels, 
particularly when selective bioactivity potency is used as 
a threshold for activity classification. Bioactivity potency 
metrics, such as IC50 is commonly employed in machine 
learning approaches. A higher IC50 (lower pIC50) value 
is preferable in the early stages of drug development 
to avoid DDIs. Generally, IC50 values from 1 to 40  µM 
are used [22, 23]; we set the inhibitor threshold to 
IC50 ≤ 10 µM (pIC50 ≥ 5), as reported by Goldwaser et al. 
[24], which indicates a strong inhibitor. Additionally, 
this threshold of IC50 ≤ 10  µM was used to mitigate 
imbalanced data between inhibitors and non-inhibitors 
in our dataset.

This dataset encompassed seven CYP isoforms. 
Notably, 215 compounds were overlapped (shared) 
among all seven individual CYP datasets, referred to 
as "sharing compounds", and eight compounds were 
inhibitors of all seven isoforms (Table  1). Merging 
datasets from all seven isoforms facilitated the 
identification of overlapping labels across individual 
CYP datasets. However, this also resulted in a significant 
number of missing labels, particularly for the smaller 
CYP2B6 and CYP2C8 datasets (96% and 94% missing 
labels, respectively).

Visualisation of dataset
A Uniform Manifold Approximation and Projection 
(UMAP) plot [25] revealed that most compounds in 
our dataset were associated with only one CYP isoform, 
as shown in Fig.  1A. A small fraction (eight of the 
12,369 compounds), represented by dark red dots in 
the plot, demonstrated multi-inhibitory activity against 

CYP isoforms. Interestingly, the spatial distribution 
of these multitarget inhibitors across the UMAP plot 
demonstrated a lack of clustering, implying a high degree 
of structural heterogeneity within this subgroup. In 
essence, the UMAP analysis suggested that the potent 
multi-inhibitory activity was not restricted to specific 
chemical scaffolds.

Figure  1B illustrates the chemical space distribution 
of CYP2B6 and CYP2C8 in comparison to the overall 
dataset. Both enzymes exhibited a narrow chemical 
space, concentrated around the central region, with a 
few data points separated far from the centre. CYP2B6 
demonstrated a more dispersed distribution with 
individual data points scattered across space. In contrast, 
CYP2C8 exhibited a clustering pattern with multiple data 
points grouped together.

Construction of the baseline model
Baseline models were built using a single-task model 
approach for each CYP isoform using a Graph 
Convolutional Neural Network (GCN) algorithm [26]. 
The F1 and Cohens-Kappa scores were used as evaluation 
metrics. The averages of F1 and Cohens-Kappa ± standard 
deviation of the test sets are shown in Table 2.

The major CYP isoforms demonstrated robust 
performance in the test sets, achieving F1 scores 
exceeding 0.7 and kappa scores greater than 0.5. 
Conversely, CYP2B6 and CYP2C8 exhibited inferior 
performance  which indicated by bold values, with 
F1 scores below 0.6 and kappa scores under 0.3, 
accompanied by larger standard deviations in the test 
sets. We attribute this suboptimal performance to 
the limited dataset size, class imbalance, and narrow 
structural diversity, which are factors that can hinder 
the development of effective predictive models. This 
established baseline performance served as a benchmark 
for comparison with subsequent models.

Table 1  Overview of the dataset

CYP enzyme Inhibitors Non-inhibitors Number of 
compounds

Total compounds Sharing compounds

1A2 1759 1922 3681 12,369 compounds 215 compounds; 8 multi-inhibitors

2B6 84 378 462

2C8 235 478 713

2C9 2656 2631 5287

2C19 1610 1674 3284

2D6 3039 3233 6272

3A4 5045 4218 9263
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Fig. 1  The chemical space of our dataset for CYP inhibition (pIC50 ≤ 5). A Overall view of seven CYP isoforms, B CYP2B6 (blue dots) and CYP2C8 (red 
dots) isoforms in comparison to the overall dataset
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Construction of the multitask, fine‑tuning, and multitask 
with imputation models for CYP2B6 and CYP2C8
To address the suboptimal performance of the baseline 
model for CYP2B6 and CYP2C8, we explored multitask 
learning and fine-tuning approaches. Multitask learning 
is a well-established strategy in deep learning and is 
known to enhance model performance by leveraging 
the relationships between multiple learning tasks [1, 8]. 
Similarly, fine-tuning has been widely adopted across 
various domains to improve the predictive capabilities 
of models by leveraging pre-trained knowledge [27–
30]. We implemented both multitask learning and fine-
tuning approaches using settings identical to those of 
the baseline model. Details of the construction of the 
multitask and fine-tuning models are presented in the 
experimental section.

Initially, the performances of the multitask and fine-
tuning models based on five major CYP isoforms and 
multitask with imputation were compared to those of 
the single-task (baseline) models, as presented in Fig. 2. 
Overall, the multitask and fine-tuning models improved 
the mean F1 and Kappa scores for CYP2B6 and CYP2C8 
compared to their respective baseline models. Our 
findings are aligned with the results of previous studies, 
which demonstrated that both multitask learning [1, 8] 
and fine-tuning [28] can improve predictive performance. 
However, we failed to achieve statistically significant 
improvements over the baseline models. We suspect 
that this limited improvement was attributed to class 
imbalance in the CYP2B6 dataset, with a predominance 
of non-inhibitors, which may have contributed to model 
instability and increased the variance in performance 
across all model types (single-task, multitask, and fine-
tuning). As reported by Li et  al. [31], a class imbalance 
can lead to biased models, favouring the majority 
class and decreasing the predictive performance of the 
minority class. Also, the insignificant improvement was 
probably associated with the training setup, in which 
missing values were assigned a weight of zero and were 

ignored during the evaluation. This approach may 
introduce bias towards non-inhibitor predictions.

To achieve statistically significant improvements, we 
first analysed the effects of missing data and sharing 
compounds on the multitask model. Because merging 
multiple tasks results in the creation of missing labels/
missing values (blank entries) for untested compounds, 
we conducted an additional study on the significance of 
data sharing and missing labels on multitask learning 
performance. We systematically varied the percentage 
of missing labels in one dataset with no missing labels, 
ranging from 0 to 95%. While the kMol platform 
treats missing labels (blank entries) as ignored data 
points, the model performance, measured by F1 and 
Kappa scores, exhibited a significant decline when the 
proportion of missing data exceeded 50% (Figure S1 
in Supplementary Information 2). This finding aligns 
with previous observations by Ayilara et  al. [31], who 
reported the detrimental effects of missing data on 
model performance, data analysis accuracy, and the 
potential for biased outcomes, particularly within 
clinical registry datasets. We found that fewer missing 
labels and larger sharing compounds resulted in better 
performance.

Given those observations, we decided to implement 
imputation on the missing value (missing label) for our 
training set using the predicted label. We employed 
a multi-imputation strategy using single-task, fine-
tuning, and multitask model prediction results to mask 
the missing labels (blank data) in our datasets [32–35]. 
This approach leverages information from the observed 
data to estimate missing entries. Subsequently, we 
incorporated the imputed datasets into our multitask 
models to predict CYP activity in small datasets, as 
illustrated in Scheme  1 in the experimental section. 
The final evaluation was performed using the test 
sets of CYP2B6 and CYP2C8, which were held at the 
beginning of the analysis and were not included in the 
training set.

Our multitask models, in combination with data 
imputation of missing values by predicted labels from the 
single-task (MIPS), multitask (MIPM), and fine-tuning 
(MIPFT) models, exhibited even greater improvement 
over the baseline model’s prediction performance for 
CYP2B6 and CYP2C8 (the three bars on the right at 
the plots in Fig.  2). In particular, MIPM exhibited a 
statistically significant improvement in CYP2B6 (p < 0.05) 
and CYP2C8 (p < 0.01) inhibitor prediction. In addition, 
MIPS also demonstrated a significant improvement 
(p < 0.01) in CYP2C8 inhibitor prediction.

By imputing missing values with predicted labels, 
we provided a model with more accurate training data, 
leading to improved predictive performance. This result 

Table 2  Evaluation of the baseline model using a single-task 
model

Bold values indicate insufficient prediction performance

CYP isoforms F1 SD ( ±) Cohens-Kappa SD (±)

1A2 0.811 0.031 0.646 0.052

2B6 0.402 0.174 0.281 0.198

2C8 0.550 0.098 0.275 0.136

2C9 0.796 0.015 0.578 0.028

2C19 0.775 0.041 0.564 0.066

2D6 0.819 0.036 0.650 0.053

3A4 0.844 0.009 0.645 0.020
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aligns with a previous study conducted by Hasan et  al. 
[36], who removed outliers and filled in missing values, 
providing improvements in their diabetes prediction 
model.

Our multitask model with the imputation approach 
was particularly effective for CYP2C8, likely because 
of its larger dataset and balanced class distribution 
compared to CYP2B6. The prediction results for 
CYP2C8 were more accurate than the single-task model 
(Kappa = 0.275 ± 0.136) with representative Kappa 
scores of 0.438 ± 0.101, 0.629 ± 0.222, and 0.385 ± 0.098, 
respectively, for MIPS, MIPM, and MIPFT. In addition, 

we suspect that our multitask models with imputation 
were able to capture overall trends in the data, 
particularly when using multitask learning. In CYP2B6 
prediction, only MIPM exhibited statistically significant 
improvement (Kappa = 0.514 ± 0.071) compared to the 
baseline model (Kappa = 0.281 ± 0.198). We also observed 
inconsistent prediction performance on CYP2B6, 
indicated by larger standard deviations, suggesting that 
the imputed values may not have accurately captured 
the underlying trends, potentially leading to higher false 
negative rates.

Fig. 2  Comparison of model performance for CYP2B6 (A F1, B Cohens-Kappa) and CYPC8 (C F1, D Cohens-Kappa). Single: single-task learning/
baseline; Multi: multitask learning based on CYP isoform data; FT_CYP isoform: fine-tuning models based on CYP isoforms; MIPS: multitask learning 
with the imputation of predicted label from single-task model; MIPM: multitask learning with the imputation of predicted label from multitask 
model; MIPFT: multitask learning with the imputation of predicted label from fine-tuning model. *Significant compared to single-task model 
(p < 0.05), **Significant compared to single-task model (p < 0.01)
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CYP inhibition potential on approved drugs for CYP2B6 
and CYP2C8
Building on our models with imputed data, we aimed to 
predict the inhibitory activity of approved drugs against 
two specific CYP isoforms, CYP2B6 and CYP2C8, which 
have small datasets and are well-mentioned in the FDA 
guidelines [16]. Moreover, many compounds have been 
untested against CYP2B6 or CYP2C8 inhibition. To 
address these issues, we created a dataset of 1,808 human-
approved drugs (available in Supplementary Information 
1, Sheet 2) taken from DrugBank [37], excluding those 
included in our dataset, defined as dataset_approved_
drugs. Dataset_approved_drugs contained 26 and 
55 approved drugs that were reported as CYP2B6 
and CYP2C8 inhibitors, respectively. The remaining 
drugs lacked known inhibitory information for these 
isoforms. We used these 26 and 55 known inhibitors as 
external test sets for evaluation. The external test set was 
subjected to preprocessing procedures identical to those 
employed for the training and validation sets. Recall 
quantification was employed to determine the model 
reliability of known approved drugs as an external test 
set for CYP2B6 and CYP2C8 using the MIPS, MIPM, and 
MIPFT models. We also constructed ensemble models 

that derived conclusions based on majority voting of the 
results of these three models.

As detailed in Table 3, the MIPS model achieved the 
highest recall scores, reaching 0.27 for CYP2B6 and 
MIPM reaching 0.60 for CYP2C8. This result suggests 
that inhibitors of CYP2C8 were successfully predicted 
in the external test set but not for CYP2B6. One reason 
for the inadequate prediction accuracy of CYP2B6 
was the structural similarity between approved_drugs 
dataset and our dataset. Comparison of chemical 
spaces based on structural information showed that, 
while occupying similar overall chemical spaces, the 
Tanimoto coefficients were relatively low, with a mean 
of 0.39 and ranging from 0.05 to 1.0 (Supplementary 
Information 2, Figure S3). Consequently, our model 
may struggle to accurately identify compounds with 
these divergent structures, resulting in a low recall 
score.　Interestingly, both the MIPM and MIPFT 
models exhibited comparable performance in 
predicting CYP2C8 inhibitors, and even our ensemble 
model with majority voting decisions did not surpass 
the MIPM recall value, suggesting that the agreement 
among the three models may not have been strong 
enough to improve the prediction accuracy. Although 
the performance of CYP2B6 remains insufficient, we 

Scheme 1  Performing missing labels (blank) prediction and multitask with imputation

Table 3  Prediction performance on observed data of CYP inhibitor drugs

Bold values indicate insufficient prediction performance

MIPS multitask learning with imputation of the predicted label from the single-task model, MIPM multitask learning with imputation of the predicted label from the 
multitask model, MIPFT multitask learning with imputation of the predicted label from the fine-tuning model. TP true positive, FN false negative

Model 2B6 2C8

TP FN Recall TP FN Recall

MIPS 7 19 0.27 24 31 0.44

MIPM 5 21 0.19 33 22 0.60
MIPFT 2 24 0.07 32 23 0.58

Ensemble model 5 21 0.19 32 23 0.58



Page 8 of 13Permadi et al. Journal of Cheminformatics           (2025) 17:66 

hypothesized that incorporating structural information, 
specifically maximum Tanimoto similarity, would 
improve the ranking of potential inhibitors, particularly 
for CYP2B6. The correlation analysis between 
maximum Tanimoto similarity and F1 score, detailed in 
Supplementary Information 2 Figure S2, revealed that 
test compounds with higher similarity to the training 
compounds would yield more accurate prediction 
results.

We then applied our procedure to the remaining drugs 
in dataset_approved_drugs. In CYP2B6 prediction, 
we used the best model to predict drug inhibitors 
of CYP2B6. In contrast, for CYP2C8 prediction, we 
identified potential inhibitors by all three models 
to obtain more reliable prediction results  (Table  4). 
Subsequently, our prediction models identified 161 and 
154 candidates for CYP2B6 and CYP2C8, respectively 
(Supplementary Information 1, Sheets 3 and 4). 
Additionally, our multitask learning approach, which 
leveraged information across all seven CYP isoforms, 
facilitated the prediction of compounds capable of 
inhibiting several CYP isoforms. Our models identified 
30 approved drugs potentially inhibiting both CYP2B6 
and CYP2C8, including two compounds predicted to 
inhibit all seven CYP isoforms (Table S1, Supplementary 
Information 2). Thus, in future work, we plan to utilise 
this prediction knowledge to build comprehensive drug-
drug interaction predictions.

To mitigate potential mispredictions, a composite 
scoring metric was implemented, integrating a 
probability score (weighted 0.7) and the maximum 
Tanimoto similarity (weighted 0.3). The probability score 
reflects the likelihood produced by the model, while the 
maximum Tanimoto similarity quantifies how reliable the 
model itself would be when applied to a given chemical 
structure. This composite score was then used to rank 
potential inhibitors, thereby reducing the likelihood of 
misclassification.

The top 10 potential inhibitors ranked by the 
composite score are presented in Table 5. Simeprevir and 
Lercanidipine were identified as the top drug candidates 
for CYP2B6 and CYP2C8, respectively. Simeprevir is 
an antiviral agent that inhibits HCV NS3/4A protease 
to treat chronic hepatitis C virus (HCV) and primarily 

metabolized by CYP3A [38]. Moreover, Lercadipine is an 
anti-hypertension drug that belongs to a class of calcium 
channel blockers. Lercadipine is well-known metabolized 
by CYP3A4 and potentially inhibits CYP2D6 and 
CYP3A4 [39]. Notably, no documented evidence of 
Lercadipine exhibiting CYP2B6 and CYP2C8 inhibitory 
activity have been found in existing repositories.

Conclusion
Our study emphasises the significant challenges posed 
by limited data, such as small sample sizes, regarding 
the efficacy of single-task prediction models for CYP 
inhibition. We successfully constructed prediction 
models for CYP2B6 and CYP2C8 using multitask 
deep learning, particularly multitask learning with a 
graph convolutional network (GCN), to overcome the 
limitations associated with small datasets. Compared 
with single-task models, fine-tuning and multitask 
models have resulted in substantial improvements. 
Ultimately, the most effective strategy for accurate CYP 
inhibition prediction involved multitask models that 
incorporated data imputation techniques and surpassed 
all other models in predicting the CYP inhibitors of 
CYP2B6 and CYP2C8 using the observed data. In 
addition, this approach successfully predicted the CYP 
inhibitory activities of 1,808 approved drugs. We also 
highlighted 161 and 154 potential inhibitors of CYP2B6 
and CYP2C8, respectively, which warrant further 
experimental validation.

Due to the limited amount of available data, it is often 
difficult to build a predictive model for pharmacokinetic 
parameters. This study demonstrates that prediction 
models can be effectively constructed even with 
small datasets by utilising related data extensively. 
Furthermore, beyond identifying individual CYP-drug 
interactions, this study paves the way for the indirect 
discovery of multi-inhibitor drugs.

Methods/experimental
Dataset, data curation, and molecular representation
Chemical and activity data retrieved from the PubChem 
Bioassay Database (consisted of AID410-1A2—9174 
data; AID883-2C9—10,296 data; AID899-2C19—10,296 
data; AID891-2D6—10,296 data; AID885-3A4—14,115 

Table 4  Overall prediction for CYP2B6 and CYP2C8 using multitask learning with imputation

Model 2B6 2C8 Final potential inhibitor Inhibitor

inh non-inh inh non-inh 2B6-inh 2C8-inh 2B6-2C8

MIPS 161 1621 527 1226

MIPM – – 411 1342 161 154 30

MIPFT – – 388 1365
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data, AID884-3A4—14,115 data), the ChEMBL Database 
(consisted of 1A2—4812 data; 2B6—572 data; 2C8—795 
data; 2C9—6366 data; 2C19—4303 data; 2D6—7231 data; 
3A4—11,712 data), and Rudik et al. [21] yielding a total of 
170,355 data points for 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 
and 3A4.

Data curation was performed using the KNIME 
[40] analytics platform (version 4.7.2) equipped with 
OpenBabel and RDKit libraries. Additionally, Python 
3 with the Pandas, RDKit, and MolVS modules were 
employed for this process. This process yielded a final 
dataset of 12,369 compounds tested for the inhibition 
of seven CYP isoforms. For compounds with multiple 
data points, the lowest IC50 value was selected based 
on experimental conditions, such as concentration 
and incubation time, as these factors can influence 
inhibitory potency. Classification was based on the 
following criteria: IC50 ≤ 10  μM was classified as an 
inhibitor, IC50 > 10  μM as a non-inhibitor, and unclear 
data points with less than values that more than 10 µM 
(e.g., IC50 < 100  μM) and greater than values that less 

than 10  µM (e.g., IC50 > 1  µM) were excluded from our 
dataset. The workflow for data curation is illustrated in 
Scheme 2.

Data visualisation
We generated a UMAP plot to visualise the relationships 
between compounds based on their fingerprint features 
derived from the SMILES strings using Morgan 
Fingerprint, which generates a 1024-bit fingerprint for 
each compound. A UMAP plot was generated using the 
UMAP package in Python 3 [25].

Model construction and optimisation
We employed a graph convolutional network (GCN) 
implemented in the kMoL library (version 1.1.5) [26] 
for model construction. The kMoL packages can be 
cloned from https://​github.​com/​elix-​tech/​kmol.​git. The 
kMoL is a specialised library designed to build machine 
learning models applicable to drug discovery and life 
science research. Our model approach employed kMoL. 
The kMoL platform proceeds with SMILES input using 

Table 5  Top potential CYP2B6 and CYP2C8 inhibitor drugs based on the highest composite score

CYP2B6 potential inhibitors

No. DrugBank ID CHEMBL ID Drug’s name Probability score Maximum 
Tanimoto’s 
similarity

Composite score (0.7 
prob + 0.3 max. Tanimoto’s 
sim.)

1 DB06290 CHEMBL501849 Simeprevir 0.979 0.928 0.964

2 DB11633 CHEMBL409153 Isavuconazole 1.000 0.868 0.960

3 DB00377 CHEMBL1189679 Palonosetron 0.997 0.792 0.935

4 DB11340 – Ubiquinol 1.000 0.780 0.934

5 DB00758 CHEMBL1771 Clopidogrel 0.984 0.771 0.920

6 DB11254 CHEMBL443605 Hexylresorcinol 0.999 0.730 0.919

7 DB14120 CHEMBL3961037 Phenylethyl resorcinol 0.999 0.727 0.918

8 DB00735 CHEMBL626 Naftifine 0.992 0.724 0.912

9 DB05239 CHEMBL2146883 Cobimetinib 1.000 0.700 0.910

10 DB12612 CHEMBL3707247 Ozanimod 1.000 0.694 0.964

CYP2C8 potential inhibitors

No. DrugBank ID CHEMBL ID Drug’s name Probability score Maximum 
Tanimoto’s 
similarity

Composite score (0.7 
prob + 0.3 max. Tanimoto’s 
sim.)

1 DB00528 CHEMBL250270 Lercanidipine 0.998 0.912 0.972

2 DB09238 CHEMBL1085699 Manidipine 0.988 0.910 0.965

3 DB14086 CHEMBL311498 Cianidanol 0.971 0.875 0.942

4 DB13946 CHEMBL2107067 Testosterone undecanoate 1.000 0.783 0.935

5 DB11340 – Ubiquinol 1.000 0.780 0.934

6 DB13944 CHEMBL1200335 Testosterone enanthate 0.999 0.783 0.934

7 DB14989 CHEMBL3948730 Umbralisib 1.000 0.746 0.924

8 DB13943 CHEMBL1201101 Testosterone cypionate 1.000 0.739 0.922

9 DB14914 CHEMBL3545253 Flortaucipir F-18 0.999 0.727 0.918

10 DB12364 CHEMBL512351 Betrixaban 0.999 0.714 0.972

https://github.com/elix-tech/kmol.git
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graph featurisation. It then generates atomic features and 
an adjacency matrix before being fed to several graph 
convolutional layers. The final layer is propagated using 
global max pooling and global add pooling. The final 
prediction was generated as the output.

We prepared 10 different data batches with 10 different 
random split seeds. 10% of the datasets were used as the 
test sets. The remaining 90% of the data were divided into 
training and validation sets at a ratio of 8:2 (as shown 
in Scheme  2). Model optimisation was achieved using 
a validation set of over 200 epochs with fivefold nested 
cross-validation. Hyperparameters, such as hidden 
features, dropout rate, layer type and number, residuals, 
and batch size, were optimised using Optuna (100 trials). 
The F1 and Kappa scores served as primary evaluation 
metrics. The final models were subsequently evaluated 
using the test set.

The baseline (single‑task) model construction
A baseline or single-task model was constructed 
for each CYP isoform (CYP1A2, CYP2B6, CYP2C8, 
CYP2C9, CYP2C19, CYP2D6, and CYP3A4) using the 
corresponding compound dataset as input. The average 
F1 and Kappa scores and their standard deviations were 
calculated for each model. The configuration file and the 

example invocations for the single-task model is provided 
in Supplementary Information 3.

The multitask model construction
Multitask deep learning was implemented by combining 
all seven CYP isoforms (CYP1A2, CYP2B6, CYP2C8, 
CYP2C9, CYP2C19, CYP2D6, and CYP3A4) as the 
multitask input. The average F1 and Kappa scores and 
their standard deviations were calculated for each 
multitask model. The configuration file and the example 
invocations for the multitask learning model is provided 
in Supplementary Information 3.

The fine‑tuning model construction
The fine-tuning models were retrieved from kMol 
documentation. The document path of the trained 
model was placed in the checkpoint_path in the config.
json file. Additionally, we set the "is_finetuning" to true at 
config.json. The new dataset was assigned to the "input_
path" in config.json. The example invocations for the 
multitask learning model is provided in Supplementary 
Information 3.

Scheme 2  Data curation workflow
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Performing missing labels (blank) prediction and multitask 
model with predicted label imputation
Initially, the original dataset was randomly split into 
90% and 10%. To predict the CYP-inhibitory activities 
of compounds lacking known inhibitory labels against 
seven CYP isoforms, we generated and extracted all the 
missing labels (missing values, NaNs) from the original 
dataset. We then predicted the missing (NaN) labels 
using the best model from each single-task, multitask, 
and fine-tuning model. Thus, we merged the predicted 
results to mask the missing (NaN) labels in the training 
and validation sets, and the completed datasets were 
established. The remaining 10% of the original dataset, 
which contained compounds with missing activity labels 
for certain CYP isoforms, was used as the test set to 
evaluate the model. Average F1 and Kappa scores along 
with their standard deviations were calculated for each 
evaluation. We prepared 10 different data batches with 
10 different random split seeds.

Prediction of potential CYP2B6 and CYP2C8 inhibitors 
among available approved drugs
A total of 2378 approved drugs (small molecules 
with a molecular weight less than or equal to 1  kDa) 
were retrieved from the DrugBank database [41] 
using the KNIME [40] analytics platform (version 
4.7.2). We filtered drugs that were not included in our 
training-validation test set, resulting in 1,808 unique 
drugs  (Scheme  3). To evaluate model reliability, we 
quantified the recall for known inhibitors of CYP2B6 
and CYP2C8 (26 and 55 inhibitors, respectively), which 
were set as the external test set. The final model with 
the best performance, identified by kMol, was employed 
to predict the inhibitory activity of the approved drugs 
against CYP isoforms.

To ascertain the most promising inhibitor for 
CYP2B6 and CYP2C8, a composite scoring function 
was employed. This function integrated a probability 
score and a Tanimoto similarity score, weighted 7:3, 
respectively. The ranking of potential inhibitors was 
determined based on the highest composite score. This 
weighting was chosen to prioritise the probability score 
as the main factor and, as additional information, we 
included structural similarity to the compounds in our 
training set (measured by the Tanimoto coefficient), to 

provide an additional layer of information about model 
reliability. We also explored alternative ratios (6:4, 8:2, 
and 9:1). The top-ranked compounds remained consistent 
across different weight ratios, although some compounds 
in the middle of the ranking changed positions by one or 
two places, reflecting small differences in their weighted 
scores. This ranking system will be used to prioritize 
compounds for further experimental validation, allowing 
us to focus on the most promising potential inhibitors. 
In more detail, a probability score was derived from a 
sigmoid transformation of kMol-generated logits, and 
Tanimoto similarity was calculated by comparing the 
chemical structures represented using 167-bit MACCS 
fingerprints between the predicted drugs list and known 
inhibitors within the original CYP2B6 and CYP2C8 
datasets.

Statistical analysis
We used a simple t-test analysis for two independent 
samples to evaluate the significance (p < 0.05 and p < 0.01) 
between all models compared to the single-task model 
for improving the CYP inhibitor prediction for a small 
dataset (CYP2B6 and CYP2C8).
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