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Abstract  Assay interference caused by small organic compounds continues to pose formidable challenges 
to early drug discovery. Various computational methods have been developed to identify compounds likely 
to cause assay interference. However, due to the scarcity of data available for model development, the predictive 
accuracy and applicability of these approaches are limited. In this work, we present E-GuARD, a novel framework 
seeking to address data scarcity and imbalance by integrating self-distillation, active learning, and expert-guided 
molecular generation. E-GuARD iteratively enriches the training data with interference-relevant molecules, result-
ing in quantitative structure-interference relationship (QSIR) models with superior performance. We demonstrate 
the utility of E-GuARD with the examples of four high-quality data sets on thiol reactivity, redox reactivity, nano-
luciferase inhibition, and firefly luciferase inhibition. Our models reached MCC values of up to 0.47 for these data 
sets, with two-fold or higher improvements in enrichment factors compared to models trained without E-GuARD 
data augmentation. These results highlight the potential of E-GuARD as a scalable solution to mitigating assay 
interference in early drug discovery.

Scientific contribution  We present E-GuARD, an innovative framework that combines iterative self-distillation 
with guided molecular augmentation to enhance the predictive performance of QSAR models. By allowing models 
to learn from newly generated, informative compounds through iterations, E-GuARD facilitates the understanding 
of underrepresented structural patterns and improves performance on unseen data. When applied across different 
interference mechanisms, E-GuARD consistently outperformed standard approaches. E-GuARD establishes the foun-
dation for further research into dynamic data enrichment and more robust molecular modeling.
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Introduction
High-throughput screening (HTS) is of fundamen-
tal importance to modern drug discovery, allowing 
for the rapid assessment of hundreds of thousands of 
compounds for activity on biomacromolecular targets 
of interest [1]. However, a substantial number of hits 
reported by HTS technologies may be linked to assay 
interference caused by compound aggregation, direct 
interference with the detection methods, or nonspecific 
chemical reactions with assay components [2, 3]. Assay 
interfering compounds are often called “bad actors” or 
“nuisance compounds” [4], and are common to chemi-
cal libraries, representing a bottleneck for the early drug 
development pipeline.

Today, various experimental approaches, such as 
counter-screenings or orthogonal assays, are routinely 
employed to identify assay-interfering compounds and 
false-positive assay readouts [2, 5]. While these experi-
mental methods are essential in drug and probe discov-
ery, they are substantial in cost and cannot always be 
applied retrospectively during chemical library screen-
ing and preparation, particularly when working with 
large libraries. On the other hand, computational meth-
ods have emerged as a promising alternative for predict-
ing assay interference [2] as they offer a complementary 
strategy by identifying potential assay interference pat-
terns earlier in the discovery process, which may help 
prioritize compounds for experimental follow-up and 
optimize screening resources.

Among the most relevant models are several machine 
learning approaches, including HitDexter 3.0 [5, 6], 
which predicts compounds likely to show frequent hitter 
behavior, and PISA-T [7], which flags compounds likely 
to interfere with fluorescence-based assays. These mod-
els leverage extensive HTS data sets but are agnostic of 
interference mechanisms.

Considering the mechanisms underlying assay interfer-
ence phenomena can improve the accuracy and relevance 
of predictions. Therefore, researchers have explored 
strategies for training machine learning approaches on 
experimental assay interference data obtained, e.g., via 
counter-screens and orthogonal assays [8–10]. However, 
data scarcity and class imbalance prove challenging for 
model development.

To expand the availability of measured data for model 
development, Alves et al. [11] selected compounds from 
the NPACT data set and subsequently tested them in-
house using HTS assays. This ensured all experimental 
data were generated under consistent conditions, mini-
mizing variation across assays. Their data collection is 
among the most comprehensive in the field and includes 
molecular structures associated with measured data on 
thiol reactivity (TR), redox reactivity (RR), nanoluciferase 

inhibition (NI), and firefly luciferase inhibition (FI). Each 
of the four interference classes is represented by approxi-
mately 5,000 measured compounds, with interference 
rates ranging from 1.5% to 20%, depending on the data 
set. The authors demonstrated that their data collection 
is suitable for training reliable machine learning mod-
els for assay interference prediction. This resulted in the 
development of the “Liability Predictor”, an online tool 
featuring XGBoost-based quantitative structure-interfer-
ence (QSIR) models that accurately identify interfering 
compounds.

Although the compiled data sets are of great value to 
research, challenges related to data scarcity and class 
imbalance remain. Theoretical approaches to address 
class imbalance range from basic techniques, such as 
over-sampling the minority class or under-sampling the 
majority class [12], to more advanced methods, such 
as weighted loss functions for hill-climbing algorithms 
[13]. Data augmentation is a further, effective strategy 
to alleviate class imbalance and data scarcity by generat-
ing synthetic examples to enrich the training set [14, 15]. 
For example, techniques such as SMOTE [16] (Synthetic 
Minority Over-sampling Technique) are widely utilized 
in cheminformatics for their flexibility and straightfor-
ward implementation. More recent applications of data 
augmentation include the introduction of noisy labels 
via self-distillation, which is the process of first train-
ing a “teacher” model on labeled data and then using 
its predictions to train a “student” model with the same 
architecture [17]. Self-distillation has been empirically 
observed to provide model performance gains on vari-
ous tasks, including image recognition [18] and protein 
structure prediction [19]. Building on this concept, Liu 
et al. [20] developed the Pseudo Label Augmented Neu-
ral System (PLANS) for quantitative structure–activity 
relation (QSAR) modeling applications. PLANS uses a 
teacher model trained on fully labeled data to generate 
pseudo-labels for a large pool of unlabeled compounds 
collected from the ChEMBL database. This self-distilla-
tion approach enhanced predictive performance when 
tested on cytochrome P450 substrate prediction and 
Tox21 data sets [21]. However, as stated by the authors, 
PLANS introduces a significant amount of noise, likely 
due to the introduction of model-generated labels when 
using the complete ChEMBL database as a source of 
unlabeled data. This noise can confuse the model, result-
ing in a notable decline in performance.

To overcome the limitations and challenges of exist-
ing approaches, in this work, we combine self-distillation 
with tailored molecular generation and active learn-
ing [22, 23] in a new framework that we call E-GuARD 
(Expert-Guided Augmentation for the Robust Detection 
of Compounds Interfering with Biological Assays).
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E-GuARD (Fig. 1) builds upon the concept of self-dis-
tillation, with two key distinctions: (i) instead of sourcing 
unlabeled data from existing data sets (e.g., the ChEMBL 
database), E-GuARD generates new chemical structures 
with the de novo molecular design tool REINVENT4 
[24]; (ii) E-GuARD adds unlabeled data to the training set 
following expert guidance emulated with MolSkill [25]. 
This approach is designed to balance exploration of the 
chemical space with targeted refinement, leveraging both 
de novo molecule generation and expert-guided feedback 
to optimize the discovery process.

Specifically, E-GuARD starts by enhancing an initial, 
small training set by iteratively adding selected com-
pounds from a pool of molecules generated with REIN-
VENT4. The teacher model guides the algorithm toward 
relevant regions of the chemical space. The loop is exe-
cuted for a defined number of iterations (in our study, 
five iterations), with new molecules selected using one 
of five acquisition functions. At the end of each itera-
tion, the teacher model transitions into the student role 

and is retrained on the augmented training data set, ena-
bling continuous refinement and improvement for each 
subsequent iteration. To minimize noise and ensure that 
compounds considered are relevant to drug discovery, 
a method to proxy human feedback is included in the 
optimization cycle. The proxy human feedback is gener-
ated with MolSkill, a neural network model developed to 
emulate the decision-making process of medicinal chem-
ists. MolSkill’s feedback is used in combination with two 
acquisition functions to select molecules to be added to 
the training set. This component indirectly injects human 
expertise into the reinforcement learning loop of REIN-
VENT4, resulting in the generation of drug-like mole-
cules based on diverse scaffolds.

We explored E-GuARD’s ability to improve the pre-
diction of four mechanisms of assay interference: TR, 
RR, NI, and FI. For each interference mechanism, we 
performed ten independent runs of iterative self-dis-
tillation. Compared to baseline QSIR models, the QSIR 
models generated with the E-GuARD approach showed 

Fig. 1  Overview of the E-GuARD workflow, which involves the iterative process of molecular generation, expert-guided data augmentation, 
and self-distillation. First, a teacher model is trained. The teacher model is then used to guide molecule generation towards interfering compounds 
(outer loop represented by black arrows). Once a pre-defined number of outer loop iterations has been completed, the teacher model becomes 
the student model and is iteratively updated through expert-guided data augmentation and self-distillation (inner loop represented by dashed red 
arrows)
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improved predictive performance across both internal 
and external test sets.

Analyzing the student model’s evolution, we show that 
E-GuARD improves the detection of compounds inter-
fering with biological assays, by enabling the learning 
of new features across iterations. Additionally, evaluat-
ing the QED scores and diversity of the generated com-
pounds shows that the newly added compounds remain 
diverse and relevant to drug discovery. This demonstrates 
that the observed performance improvements stem from 
learning novel features.

Materials and methods
Data collection
Sets of measured data on the interference of 5,098 
compounds with biological assays via TR, RR, NI, and 
FI were obtained from Alves et  al. [11]. For each data 
set, 25% of the compounds were randomly selected and 
assigned to a test set. The remaining 75% of compounds 
were divided into five subsets of equal size for cross-
validation and hyperparameter optimization (Table  1). 
All splits preserved the class distribution of the initial 
data set.

To evaluate the impact of E-GuARD on QSAR model 
performance more rigorously, we conducted an exter-
nal validation using a dataset derived from PubChem 
for firefly luciferase interference (AID411), which was 
previously employed in the Luciferase Advisor study 
[26]. SMILES and corresponding interference labels 
were obtained from PubChem, and to exclude any data 
leakage, compounds overlapping with the training set 
were identified by converting molecules to Morgan3 
fingerprints and conducting an exact match search. 
This resulted in the removal of 24 molecules. The final 
external dataset comprised 70,619 unique compounds, 
including 1571 interfering and 69,048 non-interfering 
compounds, none of which were utilized during model 
training.

E‑GuARD workflow
E-GuARD utilizes a teacher-student loop to enhance 
the prediction of interfering compounds. This loop, 
illustrated in Fig. 1, consists of four key steps:

1.	 Initial Training of the Teacher Model A QSIR model 
is initially trained on the available training data set.

2.	 Goal-Oriented Molecule Generation New molecules 
are generated and scored using the teacher model.

3.	 Expert-Guided Data Acquisition Compounds are 
selected using one of five acquisition functions, 
including expert-based scoring with MolSkill.

4.	 Teacher-to-Student Transition and Model Retrain-
ing The training set is augmented with the selected 
compounds, and the student model is retrained. The 
student model then becomes the teacher for the next 
iteration.

The following sections explain the details underlying 
the four steps and the tools utilized.

Teacher‑student model for interference prediction (QSIR)
The balanced random forest (BRF) classifier algorithm, 
implemented in the imbalanced-learn Python library 
[27], was chosen as the QSIR teacher model to provide 
a baseline consistent with the “Liability predictor” [11] 
performances (see Table S1). The BRF classifier addresses 
class imbalance by creating bootstrapped subsets with 
equal representation of each class, thereby mitigating the 
dominance of the majority class.

A dedicated BRF model was trained for each data 
set, with hyperparameters (n_estimators, max_depth, 
min_samples_split, and max_features) optimized using 
Optuna [28] over 50 trials throughout a fivefold cross-
validation procedure. As the input of the machine learn-
ing models, the molecular representation of choice was 
Morgan 3 fingerprints, with a bit length of 2048 bits, gen-
erated using the RDKit [29].

The BRF classifiers are then retrained on the aug-
mented training set using the same hyperparameter set 
determined during the initial optimization.

Table 1  Overview of the data sets employed in this work

Type of interference Training set Test set

# positive compounds # negative compounds # positive compounds # negative 
compounds

Thiol reactivity (TR) 811 3035 198 764

Redox reactivity (RR) 113 3781 29 945

Firefly luciferase inhibition (FI) 90 3834 28 953

Nanoluciferase inhibition (NI) 82 3836 15 965
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Goal‑oriented molecule generation with REINVENT4
The training set is augmented with new molecules gen-
erated with REINVENT4. REINVENT4 uses a rein-
forcement learning framework to optimize molecular 
generation based on a custom scoring function. In this 
study, the scoring function for the RL agent feedback, 
f (x) , was defined as Eq. 1,

where m(x) represents the interference score computed 
as the predicted probability of the compound x to be an 
interfering compound according to the QSIR model, and 
wt(x) is a molecular weight score designed to prioritize 
compounds typically relevant to small-molecule drug dis-
covery (160–480 Da) [30]. The weights ω1 and ω2 were set 
to 0.8 and 0.2 respectively, with normalization applied.

During each generation step, the REINVENT4 agent 
executes 250 iterations of optimization, generating 100 
compounds per iteration. By the end of the optimization 
process, a total of 25,000 compounds have been gener-
ated. This molecule pool is then filtered using one of five 
acquisition functions (see the next section for a detailed 
description) to select the 250 most informative com-
pounds. These compounds are added to the training set 
to augment the data and retrain the BRF classifier in sub-
sequent iterations.

Active data acquisition
Active learning (AL) was employed to iteratively select 
and add informative compounds to the training set, aim-
ing to increase the likelihood that the added compounds 
would be diverse and relevant to the modeled task of 
assay interference prediction.

At the end of each REINVENT4 generation cycle, a 
pool of compounds Ur is generated. The generated com-
pounds are obtained by maximizing the reward given by 
the pre-defined scoring function (Eq. 1). Then, an acqui-
sition criterion is applied to select a subset of compounds 
from Ur (Eq. 2) according to

where αApredictor(x) corresponds to the model evalua-
tion score and βAhuman(x) corresponds to the simulated 
human evaluation score. α and β are weighting constants.

First, we employed three different acquisition strategies 
with β set to 0 so that the compound selection from Ur is 
based solely on Apredictor(x):

1.	 Random Selection: Molecules are randomly selected 
from Ur.

(1)f (x) = ω1m(x)+ ω2wt(x)

(2)A(x) = αApredictor(x)+ βAhuman(x)

2.	 Greedy Selection: The molecules with the highest 
predicted probabilities of interference are selected 
from Ur focusing on the most confident model pre-
dictions.

3.	 Expected Predictive Information Gain (EPIG) Selec-
tion [31]: The most informative molecules are 
selected from Ur based on their ability to reduce the 
predictive uncertainty within the top 1000 molecules 
in Ur . For each x in Ur , EPIG calculates the expected 
mutual information between the interference labels 
of x and a randomly sampled x * from the target set 
of top high-scoring 1000 molecules. Mathematically, 
EPIG is formulated as the expected Kullback–Leibler 
divergence between the joint distribution p(y, y* | x, 
x*) and the product of marginals p(y |x)p(y* | x*).

Additionally, the Greedy and EPIG selection strate-
gies were combined with an expert-guided criterion 
Ahuman(x) , with both α and β set to 1. In this work, 
Ahuman(x) was simulated using the MolSkill score. 
The following expert-guided acquisition criteria were 
employed:

4.	 EPIGSkill: The most informative molecules are 
selected from Ur using an integrative scoring system 
that combines the EPIG score with the expert prefer-
ence score predicted by MolSkill.

5.	 GreedySkill: The most informative molecules are 
selected from Ur based on an integrative score that 
combines the Greedy score and expert preference 
score as predicted by MolSkill.

The various acquisition functions, combined with the 
simulated expert scoring, steer the generation of com-
pounds toward distinct chemical spaces. This impacts 
predictor performance and allows the approach to be tai-
lored to specific task requirements.

Expert‑guided data augmentation with MolSkill
MolSkill is a neural network designed to emulate medici-
nal chemists’ decision-making processes during lead 
optimization in drug discovery. It applies learning-to-
rank techniques to prioritize molecules based on desir-
ability criteria such as drug-likeness and synthetic 
accessibility. MolSkill is trained on preference feedback 
from 35 Novartis chemists of varying expertise. They 
were presented with pairs of drug candidates through 
a graphical interface and asked to select their preferred 
option.

In this work, MolSkill was applied as an expert scor-
ing function for data acquisition to identify the most 



Page 6 of 15Palmacci et al. Journal of Cheminformatics           (2025) 17:64 

expert-desirable generated molecules to be incorpo-
rated into the training set. The inclusion of MolSkill into 
E-GuARD aims to enhance the model’s robustness in 
detecting challenging, hard-to-detect assay interference 
compounds that exhibit desirable drug-like properties.

Evaluation metrics
For QSIR model performance
The Matthews Correlation Coefficient (MCC) was used 
as the primary measure of model performance (Eq.  3). 
The MCC is a balanced metric that takes the true posi-
tive (TP), false positive (FP), true negative (TN), and false 
negative (FN) instances into account:

The MCC returns values between −  1 (total disagree-
ment between prediction and observation) and + 1 (per-
fect agreement).

The Enrichment Factor (EF) [32] was employed to 
evaluate the ability of the model to prioritize true posi-
tives, providing a prevalence-adjusted measure of preci-
sion (Eq. 4). The EF is a measure of the factor by which a 
model enriches relevant outcomes compared to random 
chance:

EF values greater than 1 indicate that the model effec-
tively enriches true positives.

For the generated compounds
Imbalance rate (IR) puts into perspective the proportion 
of negative and positive examples of the data set, giving a 
measure for the class imbalance (Eq. 5). IR is computed at 
each iteration t as:

Internal chemical diversity assesses the chemical diver-
sity within a molecular set G (Eq. 6). The metric is lim-
ited to [0, 1], and a higher value corresponds to higher 
diversity in the generated set. Internal chemical diversity 
is measured as:

(3)

MCC =
TP · TN− FP · FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(4)EF =
Precision

TP+FP
TP+FP+TN+FN

(5)IR(t)=

∣

∣

∣

∣

Positives(t)-Negatives(t)

Positives(t)+Negatives(t)

∣

∣

∣

∣

(6)

IntDivp(G)= 1 − p

√

1

|G|
∑

m1,m2∈G
Tanimoto(m1, m2)

p

where G corresponds to the set of generated molecules, 
represented in this study by their 2048-bit Morgan2 fin-
gerprint vectors. We primarily consider p = 1 in this 
work.

The QED score [30] is a quantitative metric of a com-
pound’s drug-likeness. It is based on a combination of 
physicochemical properties commonly associated with 
successful drugs, such as reasonable molecular weight 
and lipophilicity. The QED score ranges from 0 to 1, 
where higher scores indicate a compound is more likely 
to have desirable drug-like properties.

The number of structures matching at least one PAINS 
alert is determined using the RDKit Python library 
through the FilterCatalog. PAINS method. This method 
employs a set of predefined substructure filters to iden-
tify molecules likely to produce false-positive results in 
HTS assays. The PAINS filter [33] captures structural 
motifs associated with assay interference, such as reactive 
groups, or with promiscuous binding properties. While 
many of these PAINS substructures are associated with 
redox or thiol reactivity, they can also interfere through 
other mechanisms, including aggregation and singlet 
oxygen quenching.

Model analysis
Centered kernel alignment (CKA) is a method for quan-
tifying the similarity of embedding distributions. Val-
ues for CKA range from 0 to 1, where 1 indicates high 
similarity [34]. Initially developed for NNs, CKA was 
recently adopted to better capture the similarity between 
RFs (CKArf) [35], by utilizing a random forest kernel. The 
random forest kernel compares two data instances based 
on how often they share a partition in the decision trees 
of the RF [36]. CKArf compared with CKA with dot prod-
uct as the kernel has the advantage that it can capture the 
inner workings of RFs and is hence utilized in this work 
to measure the similarity between RFs by comparing the 
embeddings distributions of the test sets. The implemen-
tation of CKA by Abdullah et al. [37] was used to calcu-
late CKA.

Results
Characterization of the data sets employed for QSIR model 
development
This work builds on data compiled for 5,098 compounds 
measured for TR, RR, NI, and FI [11]. Preprocessing this 
data according to the protocol outlined in the Methods 
section removed approximately 200 compounds per data 
set (Table 1). Ninety-five percent of the remaining mol-
ecules have measured data available for all four types of 
assay interference.

The UpSet plot in Fig. 2 shows that the overlap between 
the compounds causing different types of interference is 
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Fig. 2  UpSet plot reporting the number of interfering compounds in the individual data sets and their overlaps across the data sets. The 
horizontal bars indicate each data set’s total number of interference compounds. The vertical bars show the number of interference compounds 
in the indicated data sets. For example, there are 1009 compounds with confirmed TR and 118 with confirmed FI. Twenty of these compounds 
show both TR and FI

Fig. 3  Evolution of the training set IR over five E-GuARD iterations using the five acquisition strategies. Ten repetitions were performed using each 
acquisition strategy with higher variance among the IR values for Random, EPIG, and EPIGSkill
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minimal. This indicates that the interference mechanisms 
are primarily independent from one another. An excep-
tion is observed in the RR and TR data sets, where 36 
out of 142 compounds involved in redox reactions also 
exhibit TR. This overlap may also be attributed to the fact 
that reactions involving thiol moieties can occur through 
a redox mechanism.

Training set augmentation via active learning
Subsets of compounds generated through REINVENT4 
were selected for inclusion in the training set using five 
distinct acquisition functions: Random, Greedy, EPIG, 
GreedySkill, and EPIGSkill (see the Materials and Meth-
ods section for detailed descriptions). Figure  3 depicts 
the augmented training set IR (Eq. 5).

Clearly, the IR decreases for all the data sets during 
each iteration, highlighting a balancing effect introduced 
by E-GuARD augmentation. For the most imbalanced 
data sets (FI, NI, and RR), the IR dropped from 0.97 to 
0.60, indicating a progressive balancing effect of the 
active learning acquisitions. For TR, the effect is less pro-
nounced. Still, at iteration five, E-GuARD enriched the 

data set with positive samples, achieving almost perfect 
balancing as indicated by an IR of approximately 0.20.

While all acquisition functions contributed to improv-
ing data set balance, the strategies that prioritized the 
selection of compounds with high interference scores 
(e.g., Greedy, GreedySkill, and EPIGSkill) consistently 
added more than 200 likely interfering compounds at 
each iteration. This result underscores the effectiveness 
of active learning in mitigating data set imbalance by sys-
tematically enriching the training set with relevant and 
informative samples.

Further, we explored how E-GuARD affects the chemi-
cal space of the training set across sampling iterations 
by analyzing the augmented data set’s internal diversity 
(Eq. 6), scaffold similarity with the initial training set, and 
the presence of PAINS substructures (Fig. 4). As shown in 
Fig. 4a, the internal molecular diversity value decreased, 
on average, by 20% across the five E-GuARD iterations 
for every data set. This phenomenon could be attributed 
to the generative model mode collapse [38], leading to 
the maximum exploitation of the reward function and 
resulting in a diminished exploration of new regions of 
the chemical space. Still, an internal diversity of at least 

Fig. 4  Chemical space analysis of the training set across five E-GuARD iterations: a chemical diversity within the generated compounds 
added to the training set, b Tanimoto similarity, computed using Morgan2 fingerprints with 2048 bits, between the newly generated scaffolds 
and the scaffolds represented in the initial training set, c number of compounds matching at least one PAINS pattern
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0.6 was maintained when Random sampling, the Greedy 
or EPIGSkill acquisition functions were utilized. Random 
sampling maintained the highest molecular diversity 
with more than 0.7 Tanimoto distance within the sets of 
generated molecules. This outcome is expected as REIN-
VENT4 inherently generates diverse samples due to its 
Diversity Filters functionality. In contrast, uniform sam-
pling from the generated chemical space is performed 
when no scoring function is applied.

In addition, we computed the scaffold similarity 
between the initial training sets and newly generated 
compounds to evaluate the evolution of the explored 
chemical space. As shown in Fig.  4b, scaffold similarity 
remained, on average, constant across iterations (val-
ues between 0.11 and 0.12), independent of sampling 
strategies and data sets. These low similarities indicate 
the novelty of the compounds added to the training set 
at each iteration, suggesting that E-GuARD successfully 
explores novel interference-relevant chemical spaces and 
can potentially expand the model’s possibilities of learn-
ing new structures associated with interference.

To further evaluate the impact of E-GuARD on the 
training chemical space, we analyzed the number of 
PAINS-containing structures added to the training set at 

each iteration, as shown in Fig. 4c. The plot reveals that 
the number of added compounds triggering PAINS alerts 
for the FI and NI data sets remained below 50 across 
the five iterations, regardless of the acquisition func-
tion used. In contrast, the TR and RR data sets showed 
enrichment in PAINS-containing compounds from the 
first iterations, with 50% and 90% of the added com-
pounds containing PAINS substructures for TR and 
RR data sets, respectively. This was particularly notice-
able with the GreedySkill and Greedy acquisition func-
tions. The absence of PAINS in the FI and NI data sets, 
as well as their notable increase in the RR data set, can 
be attributed to the nature of PAINS. Most PAINS are 
associated with redox reactivity and are not linked to 
mechanisms resulting in luciferase inhibition, explain-
ing their differing distribution across data sets. However, 
given that PAINS substructures may interfere via alterna-
tive mechanisms such as aggregation or singlet oxygen 
quenching, their presence could contribute to assay-
dependent biases beyond redox activity. This suggests 
that while E-GuARD can enrich data sets with structural 
patterns associated with different types of assay interfer-
ence, it may also inadvertently amplify the presence of 
compounds prone to false positives. The impact of this 

Fig. 5  Boxplot reporting the log-likelihood of the putative interfering compounds to be generated by REINVENT4 across iterations for each 
data set. Each plot compares the likelihood achieved using different acquisition functions (Random, Greedy, EPIG, EPIGSkill, and GreedySkill) 
throughout five iterations
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enrichment depends on the context: on the one hand, it 
enables the model to learn and recognize interference-
prone chemotypes, potentially improving its ability to 
distinguish true actives from assay artifacts. On the other 
hand, it could introduce unintended biases if these struc-
tures disproportionately influence model predictions and 
lead to an overrepresentation of PAINS-containing com-
pounds in the acquired data. Therefore, while E-GuARD 
can be used to shape the training space towards interfer-
ence compounds, careful interpretation of the generation 
outcome is necessary to ensure that enrichment does not 
compromise model generalizability.

Additionally, it is essential to assess whether the gen-
erative model can produce molecules resembling known 
interfering compounds. This evaluation helps determine 
E-GuARD’s ability to enhance the training set with struc-
tures relevant to the modeled task. Hence, we analyzed 
the likelihood of the RL agent to generate the known 
interfering compounds present in the test set. Figure  5 
shows the evolution of the log-likelihood scores com-
puted for known interfering compounds from the test 
set. Clearly, the boxplot exhibits an upward trend over 
successive iterations. For all the data sets, the likelihood 
value increased by at least 50% when the run was com-
pleted (i.e., at iteration five), suggesting that the mole-
cule generator learns relevant structures of unseen assay 
interfering compounds.

As E-GuARD iteratively generates compounds, ensur-
ing that the generated structures maintain drug-like 
properties relevant for early drug discovery is essential. 
To evaluate this, we computed the QED metric (meas-
uring drug-likeness) for the generated interfering com-
pounds, tracking these metrics for each acquisition 
function. For the NI data, the QED distributions are 
shown in Fig. 6 (the results for the remaining data sets are 
reported in Figure S1). For NI, a significant increase in 
QED (two-sample t-test: T = 30.94, P < 0.001, DF = 6416) 
was achieved when the GreedySkill acquisition function 

was applied. Indeed, the initial mean QED value of 0.48 
increased up to 0.76 by the end of iteration five.

When using EPIGSkill acquisition, a smaller yet notice-
able increase in QED was observed (the QED mean 
reached 0.63 at iteration five). Other acquisition func-
tions did not show any positive contribution to the QED 
of the generated molecules. The observed improvement 
in the drug-likeness of generated molecules with human-
preference-based acquisition functions (e.g., GreedySkill, 
EPIGSkill) highlights the importance of human feedback 
in keeping the generative model’s output relevant to drug 
discovery. Hence, adopting simulated human experts 
gives the QSIR model additional opportunities to learn 
challenging cases.

Student evolution: central kernel alignment (CKArf) 
analysis
Understanding the evolution of classifiers in response 
to augmented training data is critical for assessing 
E-GuARD’s iterative training effectiveness. To (i) quan-
tify the effect of supplementing the training data of the 
model with generated molecules and (ii) check for con-
sistency across runs, we used CKArf to measure simi-
larity between initial teacher and student models and 
between student models of different runs, respectively. 
Figure  7 shows the average CKArf between the initial 
teacher and the student of the ten runs and the average 
CKArf between all pairwise student model combinations 
of different runs.

As more augmented data is added to the training set 
throughout the iterations, the similarity between the 
teacher and student models decreases, especially for Ran-
dom acquisition, where the difference between the last 
and first iteration was, on average, − 0.13 across data sets 
and runs, confirming that supplementing the model with 
additional data changes how the RFs partition the test 
data.

Because Random selection favors exploration, the simi-
larity between student and teacher is generally higher for 

Fig. 6  Distributions of QED scores of the putative interfering compounds computed across five E-GuARD iterations for the NI data set. The red 
dashed, vertical line in each panel corresponds to the mean QED score of the interfering compounds in the initial predictor training set
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the Random acquisition function than for Greedy and 
EPIG, especially at earlier iterations. This effect is most 
notable for the FI data set, where the average CKArf 
between the teacher model and the student model at iter-
ation 1 was 0.87 ± 0.02, while all other acquisition func-
tions achieved an average CKArf of less than 0.72.

The inter-student CKArf remained above 0.91 across 
iterations for the FI and TR data set, confirming that 
the decision rules remained consistent with respect to 
the test set. Notably, in most experiments, across runs, 
student models kept a close similarity within each itera-
tion while diverging from the initial teacher model (the 
dashed line is above the solid line, with the exceptions 
being panels (c) and (e)). This suggests that the student 
models evolve similarly regardless of the specific mol-
ecule selection in a given run.

Prediction of interfering compounds
We analyzed the evolution of EF and MCC metrics 
across ten independent runs to evaluate how E-GuARD 

enhances QSIR model performance over consecu-
tive iterations. As shown in Fig.  8, the baseline models 
already achieved EF values above 2.0 across all data sets. 
Successive iterations with E-GuARD-guided augmenta-
tion improved these values. Notable gains include an EF 
increase of 18.0 for FI, 10.0 for NI, and 3.5 for TR when 
using the Greedy, GreedySkill, and EPIGSkill acquisi-
tion functions. The minor improvement observed for 
TR reflects its more balanced initial data set, leaving less 
room for augmentation benefits.

The choice of the acquisition function plays a critical 
role in driving performance improvements. While ran-
dom sampling consistently underperformed, strategic 
selection through Greedy, GreedySkill, and EPIGSkill 
led to the most substantial and consistent gains across 
data sets. Interestingly, the RR data set showed variable 
performance, but EF values greater than 6.0 were still 
achieved for multiple model instances.

Beyond EF, we also evaluated the impact of E-GuARD 
on overall classification performance using MCC. As 

Fig. 7  Inter-student CKArf (dotted lines) measures the similarity between student RFs of different runs, and student–teacher CKArf (solid lines) 
measures the similarity between student RFs and teacher RF
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shown in Fig.  9, E-GuARD improved MCC scores for 
three out of four data sets. Notably, data sets with 
moderately strong baseline models, such as TR, exhib-
ited the largest gains, with MCC rising from 0.39 to a 
maximum of 0.46. For weaker baseline models, such 
as FI (initial MCC = 0.22), significant gains (t-test: T: 
4.04; P = 0.002, DF = 9) were observed with the Greedy 
acquisition strategy, achieving a peak MCC average of 
0.26 at iteration 3.

The results were mixed for data sets with low ini-
tial MCC values, such as RR (MCC = 0.12) and NI 
(MCC = 0.09). In the NI data set, E-GuARD induced spe-
cific improvements over initial values in early iterations, 
reaching a maximum MCC mean of 0.15 with the Greedy 
(t-test: T = 6.58, P < 0.001, DF = 9) and GreedySkill (t-test: 
T: 10.04, P < 0.001, DF = 9) acquisition functions. The 
average MCC across the 10 independent runs for the RR 
data set did not improve but remained consistent with 
the initial model, indicating that while positive predic-
tive performance increased, overall classification perfor-
mance was not compromised. Additional metrics and 
t-test significance statistics are provided in the Supple-
mentary Materials (Tables S2–S6).

Additionally, we conducted a t-test statistical analy-
sis of the performance of all four selection strategies 
(Greedy, GreedySkill, EPIG, and EPIGSkill) applied 
to the four tasks (NI, FI, TR, RR) using different evalu-
ation metrics: MCC, EF, balanced accuracy, and the 
precision-recall area under the curve (PR AUC). Specifi-
cally, we report the results from the E-GuARD iteration 
that achieved the highest MCC mean value across the 10 
independent runs for each acquisition strategy and com-
pare these results to the same iteration under random 
sampling. The results indicate that the different selection 
strategies consistently outperformed random data selec-
tion across the four tasks and evaluation metrics to vary-
ing degrees. EF showed the most consistent improvement 
across all tasks and strategies, with GreedySkill dem-
onstrating the most substantial impact (NI: T = 13.62, 
P < 0.001, DF = 13.54; FI: T = 29.21, P < 0.001, DF = 15.97; 
TR: T = 13.50, P < 0.001, DF = 17.50; RR: T = 1.90, 
P = 0.08, DF = 10.59). The MCC improved significantly 
in most cases, particularly with Greedy and EPIGSkill 
(e.g., Greedy—NI: T = 4.88, P < 0.001, DF = 16.18; FI: 
T = 5.50, P < 0.001, DF = 16.73; TR: T = 4.51, P < 0.001, 
DF = 16.43; RR: T = 2.83, P = 0.01, DF = 15.24). Balanced 

Fig. 8  Strip plots displaying the evolution of EF values across five iterations for each data set. The red dashed lines indicate the initial performance 
computed with the model trained on non-augmented data
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accuracy, however, did not show significant improve-
ments and, in some cases, even declined significantly 
(e.g., GreedySkill—NI: T = 0.83, P = 0.42, DF = 17.65; FI: 
T = − 9.86, P < 0.001, DF = 12.87; TR: T = − 2.0, P = 0.06, 
DF = 14.78; RR: T = −  4.34, P < 0.001, DF = 12.63). The 
PR AUC improvements were inconsistent, with Greedy 
and GreedySkill frequently outperforming the random 

baseline (e.g., Greedy—NI: T = 2.69, P = 0.01, DF = 16.35; 
FI: T = −  0.99, P = 0.34, DF = 11.81; TR: T = 4.34, 
P < 0.001, DF = 17.97; RR: T = 3.48, P = 0.002, DF = 16.57), 
while EPIG and EPIGSkill show mixed results. Overall, 
Greedy and EPIGSkill provided the most reliable sig-
nificant improvements across tasks compared to the 

Fig. 9  Strip plots displaying the evolution of the MCC score computed across iterations for each data set. The red dashed line indicates the initial 
performances calculated with the model trained on non-augmented data

Fig. 10  Strip plots illustrating the evolution of (a) MCC and (b) EF scores throughout E-GuARD iterations on the external dataset. The red dashed 
line indicates the initial performance of the threshold-optimized baseline model
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Random sampling baseline, particularly in EF and MCC, 
making them the most effective selection strategies.

External validation on PubChem bioassay data
To further evaluate the impact of the E-GuARD approach 
on predicting compounds that interfere with biological 
assays, we conducted additional experiments on an exter-
nal dataset (AID411) sourced from the PubChem Bioas-
say database.

In this study, we adopted a threshold-optimized version 
of the FI teacher model to assess whether threshold tun-
ing alone could account for performance gains. However, 
as shown in Fig.  10, E-GuARD consistently improved 
model performance beyond what can be achieved 
through threshold optimization alone, with a maximum 
observed increase of the MCC by 0.1 and the EF by 6.

The initial low performance of the baseline models 
likely relates to the external data set extending beyond 
the chemical space on which the original models were 
trained, significantly complicating the prediction task. 
Furthermore, differences in assay conditions between the 
external data set and the original training set introduce a 
degree of aleatoric uncertainty, which may further affect 
model performance.

Despite these challenges, we continue to observe a con-
sistent performance improvement with E-GuARD, high-
lighting its potential utility in addressing data scarcity 
and enhancing model generalization.

Conclusions
This work introduces E-GuARD, a powerful approach 
to predicting assay interference compounds that inte-
grates self-distillation, active learning, and expert-guided 
molecular generation. We show that E-GuARD enriches 
the initial, small training data sets with structurally 
diverse compounds representing the minority class. The 
integrated approach enhanced key performance metrics, 
such as the EF and the MCC, across all four test cases 
under investigation. Moreover, E-GuARD ensures that 
data sets remain chemically relevant to drug discovery 
by integrating human expertise into the data acquisition 
process.

As our work shows, E-GuARD induces significant per-
formance improvements in machine learning models, 
which could translate into a smoother hit prioritization 
process for HTS scientists and medicinal chemists in 
early drug discovery. By enriching the identification of 
interference-free compounds, E-GuARD can double the 
number of true positives compared to standard QSAR 
models, reducing experimental validation time and 
costs. For medicinal chemists, E-GuARD offers a chem-
informatics-driven method to identify and deprioritize 

compounds prone to interference, optimizing HTS 
libraries before synthesis.

However, this work is not without limitations. The data 
sets used in this study have a limited chemical space and 
do not cover all possible interference types, highlight-
ing areas for future exploration. While E-GuARD shows 
great promise, addressing these gaps and expanding its 
applicability to broader interference types will be key in 
future research. This pioneering effort lays the ground-
work for integrating machine learning with experimen-
tal validation to enhance drug discovery efficiency and 
reliability.
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