
Burns and Green ﻿Journal of Cheminformatics (2025) 17:73
https://doi.org/10.1186/s13321-025-01013-4

SOFTWARE Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cheminformatics

Generalizable, fast, and accurate DeepQSPR
with fastprop
Jackson W. Burns1    and William H. Green1*    

Abstract 

Quantitative Structure–Property Relationship studies (QSPR), often referred to interchangeably as QSAR, seek to estab-
lish a mapping between molecular structure and an arbitrary target property. Historically this was done on a target-
by-target basis with new descriptors being devised to specifically map to a given target. Today software packages exist
that calculate thousands of these descriptors, enabling general modeling typically with classical and machine learning
methods. Also present today are learned representation methods in which deep learning models generate a target-
specific representation during training. The former requires less training data and offers improved speed and inter-
pretability while the latter offers excellent generality, while the intersection of the two remains under-explored. This
paper introduces fastprop, a software package and general Deep-QSPR framework that combines a cogent set
of molecular descriptors with deep learning to achieve state-of-the-art performance on datasets ranging from tens
to tens of thousands of molecules. fastprop provides both a user-friendly Command Line Interface and highly
interoperable set of Python modules for the training and deployment of feedforward neural networks for property
prediction. This approach yields improvements in speed and interpretability over existing methods while statisti-
cally equaling or exceeding their performance across most of the tested benchmarks. fastprop is designed
with Research Software Engineering best practices and is free and open source, hosted at github.com/jacksonburns/
fastprop.

Scientific Contribution 

fastprop is a QSPR framework that achieves state-of-the-art accuracy on datasets of all sizes without sacrificing
speed or interpretability. As a software package fastprop emphasizes Research Software Engineering best prac-
tices, reproducibility, and ease of use for experts across domains.

Keywords  QSPR, Learned representations, Deep learning, Molecular descriptors

Introduction
Chemists have long sought a method to relate only the
connectivity of a molecule to its corresponding molecu-
lar properties. The Quantitative Structure–Property
Relationship (QSPR) would effectively solve the for-
ward problem of molecular engineering and enable

rapid development. Reviews on the topic are numerous
and cover an enormous range of scientific subdomains;
a comprehensive review of the literature is beyond the
scope of this publication, though the work of Muratov
and coauthors [1] provides an excellent starting point for
further review. An abridged version of the history behind
QSPR is presented here to contextualize the approach of
fastprop.

*Correspondence:
William H. Green
whgreen@mit.edu
1 Massachusetts Institute of Technology, Cambridge, MA, USA

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-025-01013-4&domain=pdf
http://orcid.org/0000-0002-0657-9426
http://orcid.org/0000-0003-2603-9694

Page 2 of 11Burns and Green ﻿Journal of Cheminformatics (2025) 17:73

Historical approaches
Early in the history of computing, limited computational
power meant that significant human expertise was
required to guide QSPR models toward effectiveness.
This materialized in the form of bespoke molecular
descriptors - scalar-valued functions which operate on
the molecular graph in such a way to reflect relevant
structural and electronic information. Examples include
rudimentary counting descriptors, the Wiener Index
in 1947 [2], Atom-Bond Connectivity indices in 1998
[3], and many others [4]. To this day descriptors are
still being developed - the geometric-harmonic-Zagreb
degree based descriptors were proposed by Arockiaraj
et al. in 2023 [5]. This time consuming technique is of
course highly effective but the dispersed nature of this
chemical knowledge means that these descriptors are
spread out throughout many journals and domains with
no single source to compute them all.

The range of regression techniques applied to these
descriptors has also been limited. As explained by Mura-
tov et al. [1] QSPR uses linear methods (some of which
are now called machine learning) almost exclusively.
The over-reliance on this category of approaches may be
due to priorities; domain experts seek interpretability in
their work, especially given that the inputs are physically
meaningful descriptors, and linear methods lend them-
selves well to this approach. Practice may also have been
a limitation, since historically training and deploying
neural networks required more computer science exper-
tise than linear methods.

All of this is not to say that Deep Learning (DL) has
never been applied to QSPR. Applications of DL to QSPR,
i.e. DeepQSPR, were attempted throughout this time
period but focused on the use of molecular fingerprints
rather than descriptors. This may be at least partially
attributed to knowledge overlap between deep learning
experts and this sub-class of descriptors. Molecular fin-
gerprints are bit vectors which encode the presence or
absence of sub-structures in an analogous manner to the
“bag of words” featurization strategy common to natural
language processing. Experts have bridged this gap to
open this subdomain and proved its effectiveness. In Ma
and coauthors’ review of DL for QSPR [6], for example,
it is claimed that DL with fingerprint descriptors is more
effective than with molecular-level descriptors. They also
demonstrate that DL outperforms or at least matches
classical machine learning methods across a number of
ADME-related datasets. The results of the present study
demonstrate that molecular-level descriptors actually are
effective and reaffirm that DL matches or outperforms
baselines, in this case linear.

Despite their differences, both classical- and Deep-
QSPR shared a lack of generality. Beyond the domains

of chemistry where many of the descriptors had been
originally devised, models were either unsuccessful or
more likely simply never evaluated. As interest began to
shift toward the prediction of molecular properties which
were themselves descriptors (i.e. derived from quantum
mechanics simulations) - to which none of the devised
molecular descriptors were designed to be correlated -
learned representations (LRs) emerged.

Shift to learned representations
The exact timing of the transition from fixed descrip-
tors (molecular-level or fingerprints) to LRs is difficult to
ascertain [7]. Among the most cited at least is the work
of Yang and coworkers in 2019 [8] which laid the ground-
work for applying LRs to “Property Prediction” - QSPR
by another name. In short, the basic idea is to initialize
a molecular graph with only information about its bonds
and atoms such as order, aromaticity, atomic number, etc.
Then via a Message Passing Neural Network (MPNN)
architecture, which is able to aggregate these atom- and
bond-level features into a vector in a manner which can
be updated, the ‘best’ representation of the molecule is
found during training. This method proved highly accu-
rate and achieved the generality apparently lacking in
descriptor-based modeling. The modern version of the
corresponding software package Chemprop (described in
[9]) has become a de facto standard for property predic-
tion, partially because of the significant development and
maintenance effort supporting that open source software
project.

Following the initial success of Chemprop numerous
representation learning frameworks have been devised,
all of which slightly improve performance. The Com-
municative-MPNN (CMPNN) framework is a modified
version of Chemprop with a different message passing
scheme to increase the interactions between node and
edge features [10]. Uni-Mol incorporates 3D informa-
tion and relies extensively on transformers [11]. In a “full
circle moment” architectures like the Molecular Hyper-
graph Neural Network (MHNN) have been devised to
learn representations for specific subsets of chemistry,
in that case optoelectronic properties [12]. Myriad oth-
ers exist including GSL-MPP (accounts for intra-dataset
molecular similarity) [13], SGGRL (trains three repre-
sentations simultaneously using different input formats)
[14], and MOCO (multiple representations and contras-
tive pretraining) [15].

Limitations
Despite the continuous incremental performance
improvements, this area of research has serious
drawbacks. A thru-theme in these frameworks is the
increasing complexity of DL techniques and consequent

Page 3 of 11Burns and Green ﻿Journal of Cheminformatics (2025) 17:73 	

un-interpretability. This also means that actually using
these methods to do research on real-world dataset
requires varying amounts of DL expertise, creating a rift
between domain experts and these methods. Perhaps the
most significant failure is the inability to achieve good
predictions on small1 datasets. This is a long-standing
limitation, with the original Chemprop paper stating
that linear models are about on par with Chemprop for
datasets with fewer than 1000 entries [8].

This limitation is especially challenging because it is
a fundamental drawback of the LR approach. Without
the use of advanced DL techniques like pre-training or
transfer learning, the model is essentially starting from
near-zero information every time a model is created. This
inherently requires larger datasets to allow the model
to effectively ‘re-learn’ the chemical intuition which
was built in to descriptor- and fixed fingerprint-based
representations.

Efforts are of course underway to address this
limitation, though no clear universal solution has
emerged. One simple but incredibly computationally
expensive approach is to use delta learning, which
artificially increases dataset size by generating all possible
pairs of molecules from the available data (thus squaring
the size of the dataset). This was attempted by Nalini
et al. [16], who used an unmodified version of Chemprop
referred to as ‘DeepDelta’ to predict differences in
molecular properties for pairs of molecules. They achieve
increased performance over standard LR approaches but
lost the ability to train on large datasets due to simple
runtime limitations. Another promising line of inquiry is
the Transformer-CNN model of Karpov et al. [17] which
leverages a pre-trained transformer model for prediction,
circumventing the need for massive datasets and offering
additional benefits in interpretability. This model is
unique in that it operates directly on the SMILES
representation of the molecule, also offering benefits in
structural attribution of predictions. Due to the extensive
pre-training this model is often more performant on
small datasets than alternatives like ChemProp with
the small additional cost of data augmentation. Other
increasingly complex approaches are discussed in the
outstanding review by van Tilborg et al. [18].

While iterations on LRs and novel approaches to low-
data regimes have been in development, the classical
QSPR community has continued their work. A turning
point in this domain was the release of mordred, a fast
and well-developed package capable of calculating more
than 1600 molecular descriptors [19]. Critically this

package was fully open source and written in Python,
allowing it to readily interoperate with the world-class
Python DL software ecosystem that greatly benefitted the
LR community. Despite previous claims that molecular
descriptors cannot achieve generalizable QSPR in
combination with DL, the opposite is shown here with
fastprop.

Implementation
At its core the fastprop ‘architecture’ is simply
the mordred molecular descriptor calculator2 [19]
connected to a Feedforward Neural Network (FNN)
implemented in PyTorch Lightning [20] (Fig. 1) - an
existing approach formalized into an easy-to-use,
reliable, and correct implementation. fastprop is
highly modular for seamless integration into existing
workflows and includes an end-to-end Command
Line Interface (CLI) for general use. In the latter mode
the user simply specifies a set of SMILES [21], a linear
textual encoding of molecules, and their corresponding
target values. fastprop optionally standardizes
input molecule and then automatically calculates and
caches the corresponding molecular descriptors with
mordred, re-scales both the descriptors and the targets
appropriately, and then trains an FNN to predict the
indicated targets. By default this FNN is two hidden
layers with 1800 neurons each connected by ReLU
activation functions, though the configuration can
be readily changed via the CLI or configuration file.
Multitask regression and multi-label classification are
also supported and configurable in the same manner,
the former having been shown to significantly improve
predictive power in cheminformatics models [22].
fastprop principally owes its success to the cogent

Fig. 1  fastprop logo

1  What constitutes a ‘small’ dataset is decidedly not agreed upon. For
the purposes of this study, it will be used to refer to datasets with ~1000
molecules or fewer, which the authors believe better reflects the size of real-
world datasets.

2  The original mordred package is no longer maintained. fastprop
uses a fork of mordred called mordredcommunity that is maintained
by community-contributed patches (see github.​com/​Jacks​onBur​ns/​mordr​
ed-​commu​nity). Others have re-implemented the mordred calculator as
osmordred which can be used in fastprop via the CLI.

https://github.com/JacksonBurns/mordred-community
https://github.com/JacksonBurns/mordred-community

Page 4 of 11Burns and Green ﻿Journal of Cheminformatics (2025) 17:73

set of descriptors assembled by the developers of
mordred. Multiple descriptor calculators from the
very thorough review by McGibbon et al. [23] could be
used instead, though none are as readily interoperable as
mordred. Additionally, the ease of training FNNs with
modern software like PyTorch Lightning and the careful
application of Research Software Engineering best
practices make fastprop as user friendly as the best-
maintained alternatives.

Fitting to molecular descriptors requires careful atten-
tion given that they can be highly correlated, often have
enormous outliers exacerbated with re-scaling, and
can be missing or infinite for some species. fastprop
includes extensive, configurable data pre-processing
steps to accommodate these limitations. First and fore-
most, users can opt to use a subset of 947 less-correlated
( r < 0.95 on QM8 [24]) mordred descriptors, though
this is usually unnessecary. Before training, all features
are standardized to have mean of zero and variance of
one. Missing features are then set to zero, equivalent to
imputing with the mean value. Finally, descriptors having
values larger than ± 3 are set to ± 3, analogous to Win-
sorization based on 3 standard deviations from the mean.
Other common pre-processing transformations, such as
the log10 function, are easily implemented when using
fastprop as a Python module.

This trivially simple idea has been alluded to in previ-
ous published work but neither described in detail nor
lauded for its generalizability or accuracy. Comesana
and coauthors, based on a review of the biofuels prop-
erty prediction landscape, claimed that methods (DL or
otherwise) using large numbers of molecular descriptors
were unsuccessful, instead proposing a feature selec-
tion method [25]. As a baseline in a study of photovol-
taic property prediction, Wu et al. reported using the
mordred descriptors in combination with both a Ran-
dom Forest and an Artificial Neural Network, though in
their hands the performance is worse than their bespoke
model and no code is available for inspection [26].

Others have also incorporated mordred descriptors
into their modeling efforts, though none with a simple
FNN as described above. Esaki and coauthors started a
QSPR study with mordred descriptors for a dataset of
small molecules, but via an enormously complex mode-
ling pipeline (using only linear methods) removed all but
53 [27]. Yalamanchi and coauthors used DL on mordred
descriptors as part of a two-headed representation, but
their network architecture was sequential hidden layers
decreasing in size to only 12 features [28] as opposed to
the constant 1800 in fastprop.

The reason fastprop stands out from these studies
and contradicts previous reports is for the simple
reason that it works. As discussed at length in the
Results & Discussion section, this approach statistically
matches or exceeds the performance of leading LR
approaches on common benchmark datasets and
bespoke QSPR models on small real-world datasets.
fastprop also overcomes the limitations of LRs
discussed above. The FNN architecture and use of
physically meaningful molecular descriptors enables
the application of SHAP [29], a common tool for
feature importance analysis (see Interpretability). The
simplicity of the framework enables domain experts to
apply it easily and makes model training dramatically
faster than LRs. Most importantly this approach is
successful on the smallest of real-world datasets. By
starting from such an informed initialization the FNN
can be readily trained on datasets with as few as forty
training examples (see PAHs).

Example usage
fastprop is built with ease of use at the forefront
of design. To that end, input data is accepted in the
immensely popular Comma-Separated Values (CSV)
format, editable with all modern spreadsheet editors
and completely platform independent. An example
specify some properties for benzene is shown below,
including its SMILES string:

Page 5 of 11Burns and Green ﻿Journal of Cheminformatics (2025) 17:73 	

fastprop itself is accessed via the command line
interface, with configuration parameters passed as
either command line arguments or in an easily editable
configuration file:

Training, prediction, and feature importance are
then readily accessible via the commands fastprop
train, fastprop predict, or fastprop shap,
respectively. The fastprop GitHub repository contains
a Jupyter notebook runnable from the browser via Google
colab which allows users to actually execute the above
example, which is also discussed at length in the PAHs
section, as well as further details about each configurable
option.

Results and discussion
There are a number of established molecular property
prediction benchmarks commonly used in LR studies,
especially those standardized by MoleculeNet [30].
Principal among them are QM8 [24] and QM9 [31],
often regarded as the standard benchmark for property
prediction. These are important benchmarks and QM9
is included for completeness, though the enormous size
and rich coverage of chemical space in the QM9 dataset
means that nearly all model architectures are highly
accurate, including fastprop.

Real world experimental datasets, particularly those
common in QSPR studies, often number in the hundreds.
To demonstrate the applicability of fastprop to these
regimes, many smaller datasets are selected including
some from the QSPR literature that are not established
benchmarks. These studies relied on more complex
and slow modeling techniques (ARA) or the design of
a bespoke descriptor (PAHs) and have not yet come to
rely on learned representations as a go-to tool. In these
data-limited regimes where LRs sometimes struggle,
fastprop and its intuition-loaded initialization are
highly powerful. To emphasize this point further, the
benchmarks are presented in order of dataset size,
descending.

Two additional benchmarks showing the limitations
of fastprop are included after the main group of
benchmarks: Fubrain and QuantumScents. The former
demonstrates how fastprop can outperform LRs
but still trail approaches like delta learning. The later is
a negative result showing how fastprop can fail on
especially difficult, atypical targets.

All of these fastprop benchmarks are reproducible,
and complete instructions for installation, data retrieval
and preparation, and training are publicly available on
the fastprop GitHub repository at github.​com/​jacks​
onbur​ns/​fastp​rop.

Benchmark methods
The method for splitting data into training, validation,
and testing sets varies on a per-study basis and is
described in each sub-section. Sampling is performed
using the astartes package [32] which implements a
variety of sampling algorithms and is highly reproducible.
For datasets containing missing target values or invalid
SMILES strings, those entries were dropped, as is the
default behavior of fastprop.

Results for fastprop are reported as the average
value of a metric and its standard deviation across a num-
ber of repetitions (repeated re-sampling of the dataset).
The number of repetitions is chosen to either match ref-
erenced literature studies or else increased from two until
the performance no longer meaningfully changes. Note
that this is not the same as cross-validation. Each section
also includes the performance of a zero-layer (i.e. linear
regression) network as a baseline to demonstrate the
importance of non-linearity in a deep NN.

For performance metrics retrieved from literature
it is assumed that the authors optimized their
respective models to achieve the best possible results;

https://github.com/jacksonburns/fastprop
https://github.com/jacksonburns/fastprop

Page 6 of 11Burns and Green ﻿Journal of Cheminformatics (2025) 17:73

therefore, fastprop metrics are reported after
model optimization using the fastprop train...
--optimize option. When results are generated for
this study using Chemprop, the default settings are used
except that the number of epochs is increased to allow
the model to converge and batch size is increased to
match dataset size and speed up training. Chemprop was
chosen as a point of comparison throughout this study
since it is among the most accessible and well-maintained
software packages for molecular machine learning.

When reported, execution time is as given by the
unix time command using Chemprop version 1.6.1
on Python 3.8 and includes the complete invocation of
Chemprop, i.e. time chemprop_train..... The
insignificant time spent manually collating Chemprop
results (Chemprop does not natively support
repetitions) is excluded. fastprop is run on version
1.0.6 using Python 3.11 and timing values are reported
according to its internal time measurement which
was verified to be nearly identical to the Unix time
command. The coarse comparison of the two packages
is intended to emphasize the scaling of LRs and Deep-
QSPR and that fastprop is, generally speaking, much
faster. All models trained for this study were run on a
Dell Precision series laptop with an NVIDIA Quadro
RTX 4000 GPU and Intel Xeon E-2286 M CPU.

Because the diversity of methods across these
different datasets complicates inter-dataset
comparisons, an additional set of benchmarks using
an identical method across all datasets is included in
Additional File 1, Table S1. This benchmark compares
fastprop, Chemprop, and the aforementioned
Transformer-CNN, which is especially suitable for
the small datasets included therein. No long-form
commentary on benchmark results is provided, though
the conclusions are largely the same as those shown
here.

Performance metrics
The evaluation metrics used in each of these bench-
marks are chosen to match literature precedent, par-
ticularly as established by MoleculeNet [30], where
available. It is common to use scale-dependent metrics
that require readers to understand the relative magni-
tude of the target variables. The authors prefer more
readily interpretable metrics such as (Weighted) Mean
Absolute Percentage Error (W/MAPE) and are included
where relevant.

All metrics are defined according to their typical for-
mulae which are readily available online and are imple-
mented in common software packages. Those presented
here are summarized below, first for regression:

•	 Mean Absolute Error (MAE): Absolute difference
between predictions and ground truth averaged
across dataset; scale-dependent.

•	 Root Mean Squared Error (RMSE): Absolute
differences squared and then averaged; scale-
dependent.

•	 Mean Absolute Percentage Error (MAPE): MAE
except that differences are relative (i.e. divided by the
ground truth); scale-independent, range 0 (best) and
up.

•	 Weighted Mean Absolute Percentage Error
(WMAPE): MAPE except the average is a weighted
average, where the weight is the magnitude of the
ground truth; scale-independent, range 0 (best) and
up.

•	 Coefficient of Determination (R2): Proportion of
variance explained; scale-independent, range 0
(worst) to 1 (best).

and classification:

•	 Area Under the Receiver Operating Curve (AUROC,
AUC, or ROC-AUC): Summary statistic combining
all possible classification errors; scale-independent,
range 0.5 (worst, random guessing) to 1.0 (perfect
classifier).

•	 Accuracy: Fraction of correct classifications,
expressed as a percentage; scale-independent, range
0 (worst) to 100 (perfect classifier).

Benchmark results
See Table 1 for a summary of all the results. Subsequent
sections explore each in greater detail. For benchmarks
with statistics, practically significant best performers are
shown in bold.

Statistical comparisons of fastprop to Chemprop
(shown in the p column) are performed using the
non-parametric Wilcoxon-Mann-Whitney Test as
implemented in GNumeric. Values are only shown for
results generated in this study which are known to be
performed using the same methods. Only the results
for Flash and PAH are statistically significant at 95%
confidence (p<0.05), see benchmark-specific subsections
for confidence intervals.

QM9
Originally described in Scientific Data [31] and perhaps
the most established property prediction benchmark,
Quantum Machine 9 (QM9) provides quantum
mechanics derived descriptors for many small molecules
containing one to nine heavy atoms, totaling 133,885. The
data was retrieved from MoleculeNet [30] in a readily

Page 7 of 11Burns and Green ﻿Journal of Cheminformatics (2025) 17:73 	

usable format. As a point of comparison, performance
metrics are retrieved from the paper presenting the
UniMol architecture [11] previously mentioned. In
that study they trained on only three especially difficult
targets (homo, lumo, and gap) using scaffold-based
splitting (a more challenging alternative to random
splitting), reporting mean and standard deviation across
3 repetitions.
fastprop achieves 0.0060 ± 0.0002 mean absolute

error, whereas Chemprop achieves 0.00814 ± 0.00001
and the UniMol framework manages 0.00467 ±
0.00004. This places the fastprop framework ahead
of previous learned representation approaches but still
trailing UniMol. This is not completely unexpected
since UniMol encodes 3D information from the dataset
whereas Chemprop and fastprop use only 2D. Future
work could evaluate the use of 3D-based descriptors to
improve fastprop performance in the same manner
that UniMol has with LRs. All methods are better than a
purely linear model trained on the molecular descriptors,
which manages only a 0.0095 ± 0.0006 MAE.

Pgp
First reported in 2011 by Broccatelli and coworkers [37],
this dataset has since become a standard benchmark and
is included in the Therapeutic Data Commons (TDC)
[38] model benchmarking suite. The dataset maps 1,275
small molecule drugs to a binary label indicating if
they inhibit P-glycoprotein (Pgp). TDC serves this data
through a Python package, but due to installation issues
the data was retrieved from the original study instead.
The recommended splitting approach is a 70/10/20
scaffold-based split which is done here with 4 replicates.

The model in the original study uses a molecular
interaction field but has since been surpassed by other
models. According to TDC the current leader [33] on this
benchmark has achieved an AUROC of 0.938 ± 0.0023.
On the same leaderboard Chemprop [8] achieves 0.886 ±

0.016 with the inclusion of additional molecular features.
fastprop yet again approaches the performance of the
leading methods and outperforms Chemprop, here with
an AUROC of 0.903 ± 0.033 and an accuracy of 83.6 ±
4.6%. Remarkably, the linear QSPR model outperforms
both Chemprop and fastprop, approaching the
performance of the current leader with an AUROC of
0.917 ± 0.016 and an accuracy of 83.8 ± 3.9%.

ARA​
Compiled by Schaduangrat et al. in 2023 [34], this dataset
maps 842 small molecules to a binary label indicating
if the molecule is an Androgen Receptor Antagonist
(ARA). The reference study introduced DeepAR, a highly
complex modeling approach, which achieved an accuracy
of 91.1% and an AUROC of 0.945.

For this study an 80/10/10 random splitting is repeated
four times on the dataset since no analogous split to the
reference study can be determined. Chemprop takes
16 min and 55 s to run on this dataset and achieves
only 82.4 ± 2.0% accuracy and 0.898 ± 0.022 AUROC.
fastprop takes only 1 min and 54 s (1 min and 39 s
for descriptor calculation) and is competitive with the
reference study in performance, achieving a 88.2 ± 3.7%
accuracy and 0.935 ± 0.034 AUROC. The purely linear
QSPR model falls far behind these methods with a 71.8 ±
6.6% accuracy and 0.824 ± 0.052 AUROC.

Flash
First assembled and fitted to by Saldana and coauthors
[35] the dataset (Flash) includes around 632 entries,
primarily alkanes and some oxygen-containing
compounds, and their literature-reported flash point.
The reference study reports the performance on only one
repetition, but manually confirms that the distribution of
points in the three splits follows the parent dataset. The
split itself was a 70/20/10 random split, which is repeated
four times for this study.

Table 1  Summary of benchmark results, best state-of-the-art method vs. fastprop and Chemprop

a [11] b [33] c [34] d [35] e [36] f [5] * These reference results were generated for this study

Benchmark Samples Metric SOTA fastprop Chemprop p

QM9 133,885 MAE 0.0047a 0.0060 0.0081a ~

Pgp 1,275 AUROC 0.94b 0.90 0.89b ~

ARA​ 842 Accuracy 91c 88 82* 0.083

Flash 632 RMSE 13.2d 13.0 21.2* 0.021

YSI 442 MAE 22.3e 25.0 28.9* 0.29

PAH 55 R2 0.96f 0.97 0.59* 0.0012

3  See the TDC Pgp leaderboard https://​tdcom​mons.​ai/​bench​mark/​admet_​
group/​03pgp/.

https://tdcommons.ai/benchmark/admet_group/03pgp/
https://tdcommons.ai/benchmark/admet_group/03pgp/

Page 8 of 11Burns and Green ﻿Journal of Cheminformatics (2025) 17:73

Using a complex multi-model ensembling method,
the reference study achieved an RMSE of 13.2, an MAE
of 8.4, and an MAPE of 2.5%. fastprop matches this
performance, achieving 13.0 ± 2.0 RMSE, 9.0 ± 0.5 MAE,
and 2.7% ± 0.1% MAPE. Chemprop, however, struggles
to match the accuracy of either method - it manages an
RMSE of 21.2 ± 2.2, an MAE of 13.8 ± 2.1, and a MAPE
of 3.99 ± 0.36%. This is worse than the performance of
the linear QSPR model, with an RMSE of 16.1 ± 4.0, an
MAE of 11.3 ± 2.9, and an MAPE of 3.36 ± 0.77%.
fastprop dramatically outperforms both methods

in terms of training time. The reference model
required significant manual intervention to create a
model ensemble, so no single training time can be
fairly identified. fastprop arrived at the indicated
performance without any manual intervention in only
30 s, 13 of which were spent calculating descriptors.
Chemprop, in addition to not reaching the same level of
accuracy, took 5 min and 44 s to do so - more than ten
times the execution time of fastprop.

YSI
Assembled by Das and coauthors [36] from a collection of
other smaller datasets, this dataset maps 442 molecular
structures to a unified-scale Yield Sooting Index (YSI),
a molecular property of interest to the combustion
community. The reference study performs leave-one-out
cross validation to fit a per-fragment contribution model,
effectively a training size of >99%, without a holdout
set. Though this is not standard practice and can lead
to overly optimistic reported performance, the results
will be carried forward regardless. The original study
did not report overall performance metrics, so they have
been re-calculated for this study using the predictions
made by the reference model as provided on GitHub4.
For comparison fastprop and Chemprop use a more
typical 60/20/20 random split and 8 repetitions. Results
are summarized in Table 2.
fastprop again outperforms Chemprop, in this

case approaching the overly-optimistic performance of
the reference model. Taking into account that reference
model has been trained on a significantly larger amount
of data, this performance is admirable. Also notable is
the difference in training times. Chemprop takes 7 min
and 2 s while fastprop completes in only 42 s, again a
factor of ten faster. The linear QSPR model fails entirely,
performing dramatically worse than all other models.

PAH
Originally compiled by Arockiaraj et al. [5] the Polycyclic
Aromatic Hydrocarbons (PAH) dataset contains water/

octanol partition coefficients (logP) for 55 polycyclic
aromatic hydrocarbons ranging in size from napthalene
to circumcoronene. This size of this benchmark is an
ideal case study for the application of fastprop. Using
expert insight the reference study designed a novel set of
molecular descriptors that show a strong correlation to
logP, with correlation coefficients ranging from 0.96 to
0.99 among the various new descriptors.

For comparison, fastprop and Chemprop are
trained using 8 repetitions of a typical 80/10/10 random
split - only 44 molecules in the training data. fastprop
matches the performance of the bespoke descriptors
with a correlation coefficient of 0.972 ± 0.025. This
corresponds to an MAE of 0.19 ± 0.10 and an MAPE of
2.5 ± 1.5%. Chemprop effectively fails on this dataset,
achieving a correlation coefficient of only 0.59 ± 0.24, an
MAE of 1.04 ± 0.33 (one anti-correlated outlier replicate
removed). This is worse even than the purely linear QSPR
model, which manages a correlation coefficient of 0.78
± 0.22, an MAE of 0.59 ± 0.22, and an RMSE of 0.75 ±
0.32. Despite the large parameter size of the fastprop
model relative to the training data, it readily outperforms
Chemprop in the small-data limit.

For this unique dataset, execution time trends are
inverted. fastprop takes 1 min and 43 s, of which
1 min and 31 s were spent calculating descriptors for
these unusually large molecules. Chemprop completes in
1 min and 16 s, faster overall but much slower compared
with the training time of fastprop without descriptor
calculation.

Limitations and future work
Negative results
The fastprop framework is not without its drawbacks.
The two subsequent sections explore in greater detail
two specific cases where fastprop loses out to existing
methods, but some general notes about out-of-distribu-
tion predictions and overfitting are also included here.
Like all machine learning methods, fastprop is not
intended to make predictions outside of its training fea-
ture space. The use of molecular descriptors, which can
become out-of-distribution, may exacerbate this problem
but fastprop can optionally winsorize the descriptors

Table 2  Accuracy of YSI predictions from Reference model [36],
Linear QSPR model, fastprop, and Chemprop

Model MAE RMSE WMAPE

Reference 22.3 50 14

fastprop 25.0 ± 5.2 52 ± 20 13.6 ±1.3

Chemprop 28.9 ± 6.5 63 ± 14 16.4 ± 3.0

Linear 82 ± 39 180 ± 120 47.0 ± 2.3

4  Predictions are available at this perma​link to the CSV file on GitHub.

https://github.com/pstjohn/ysi-fragment-prediction/blob/bdf8b16a792a69c3e3e63e64fba6f1d190746abe/data/ysi_predictions.csv

Page 9 of 11Burns and Green ﻿Journal of Cheminformatics (2025) 17:73 	

to counteract this issue. Additionally, hyperparameter
optimization of machine learning models in cheminfor-
matics has been known to cause overfitting [39], espe-
cially on small datasets. Users should be cautious when
optimizing fastprop models and rely on defaults when
possible.

Delta learning with fubrain
First described by Esaki and coauthors, the Fraction
of Unbound Drug in the Brain (Fubrain) dataset is
a collection of 254 small molecule drugs and their
corresponding experimentally measured unbound
fraction in the brain, a critical metric for drug
development [27]. This specific target in combination
with the small dataset size makes this benchmark highly
relevant for typical QSPR studies, particular via delta
learning. DeepDelta [16] performed a 90/0/10 cross-
validation study of the Fubrain dataset in which the
training and testing molecules were intra-combined to
generate all possible pairs and then the differences in the
property5 were predicted, rather than the absolute values,
increasing the amount of training data by a factor of 300.

DeepDelta reported an RMSE of 0.830 ± 0.023 at
predicting differences, whereas a typical Chemprop
model trained to directly predict property values was only
able to reach an RMSE of 0.965 ± 0.09 when evaluated on
its capacity to predict property differences. fastprop
is able to outperform Chemprop, though not DeepDelta,
achieving an RMSE of 0.930 ± 0.029 when using the same
splitting procedure above. It is evident that delta learning
is still a powerful technique for regressing small datasets.

For completeness, the performance of Chemprop
and fastprop when directly predicting the unbound
fraction are also compared to the original study by
Esaki and coauthors. Using both cross validation and
and external test sets, they had an effective training/
validation/testing split of 0.64/0.07/0.28 which will
be repeated 4 times here for comparison. They used
mordred descriptors in their model but as is convention
they strictly applied linear modeling methods. All told,
their model achieved an RMSE of 0.53 averaged across
all testing data. In only 39 s, of which 31 are spent
calculating descriptors, fastprop far exceeds the
reference model with an RMSE of 0.207 ± 0.024. This also
surpasses Chemprop, itself outperforming the reference
model with an RMSE of 0.223 ± 0.036.

fastprop fails on QuantumScents
Compiled by Burns and Rogers [40], this dataset con-
tains approximately 3.5k SMILES and 3D structures for

a collection of molecules labeled with their scents. Each
molecule can have any number of reported scents from
a possible 113 different labels, making this benchmark a
a Quantitative Structure-Odor Relationship. Due to the
highly sparse nature of the scent labels a unique sampling
algorithm (Szymanski sampling [41]) was used in the ref-
erence study and the exact splits are replicated here for a
fair comparison.

In the reference study, Chemprop achieved an AUROC
of 0.85 with modest hyperparameter optimization and
an improved AUROC of 0.88 by incorporating the
atomic descriptors calculated as part of QuantumScents.
fastprop is incapable of incorporating atomic features,
so they are not included. Using only the 2D structural
information, fastprop falls far behind the reference
study with an AUROC of only 0.651 ± 0.005. Even when
using the high-quality 3D structures and calculating
additional descriptors (demonstrated in the GitHub
repository), the performance does not improve.

The exact reason for this failure is unknown. Possible
reasons include that the descriptors in mordred are
simply not correlated with this target, and thus the model
struggles to make predictions. This is a fundamental
drawback of this fixed representation method - whereas
a LR could adapt to this unique target, fastprop fails.

Execution time
fastprop is consistently faster to train than Chemprop
when using a GPU, helping exploit the ‘time value’
of data. Note that due to the large size of the FNN in
fastprop it can be slower than small Chemprop
models when training on a CPU since Chemprop uses a
much smaller FNN and associated components.

There is a clear performance improvement to be
had by reducing the number of descriptors to a subset
of only the most important. Future work can address
this possibility to decrease time requirements for both
training by reducing network size and inference by
decreasing the number of descriptors to be calculated
for new molecules. This has not been done in this study
for two reasons: (1) to emphasize the capacity of the
DL framework to effectively perform feature selection
on its own via the training process, de-emphasizing
unimportant descriptors; (2) as discussed above, training
time is small compared to dataset generation time, or
even compared to to the time it takes to compute the
descriptors using mordred.

Coverage of descriptors
fastprop is fundamentally limited by the types of
chemicals which can be uniquely described by the
mordred package. Domain-specific additions which
are not just derived from the descriptors already

5  Although the original Fubrain study reported untransformed fractions,
the DeepDelta authors confirmed via GitHub that DeepDelta was trained
on log base-10 transformed fraction values, which is replicated here.

https://github.com/RekerLab/DeepDelta/issues/2#issuecomment-1917936697

Page 10 of 11Burns and Green ﻿Journal of Cheminformatics (2025) 17:73

implemented will be required to expand its application
to new domains. To facilitate this use case fastprop
allows users to pass pre-computed descriptors from the
CLI. This allows seamless interoperation with other user-
developed descriptors or other molecular descriptor
calculators.

For example, in its current state mordred does not
include any connectivity based-descriptors that reflect
the presence or absence of stereocenters. While some of
the 3D descriptors it implements could implicitly reflect
sterochemistry, more explicit descriptors like the Stereo
Signature Molecular Descriptor [42] may prove helpful in
the future if re-implemented in mordred.

Interpretability
Though not discussed here for the sake of length,
fastprop contains the functionality to perform feature
importance studies on trained models. By using SHAP
values [29] once can assign a scalar ‘importance’ to each
of the input features with respect to the target value,
such as molecular weight having a significant positive
impact on boiling point in alkanes. Experts users can
leverage this information to guide molecular design
and optimization or inform future lines of inquiry. Via
the fastprop CLI users can train a model and then
use fastprop shap to analyze the resulting trained
network. fastprop shap will then generate diagrams
to visualize the SHAP values.

Availability

•	 Project name: fastprop
•	 Project home page: github.com/jacksonburns/

fastprop
•	 Operating system(s): Platform independent
•	 Programming language: Python
•	 Other requirements: pyyaml, lightning,

mordredcommunity, astartes
•	 License: MIT

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13321-​025-​01013-4.

Supplementary material 1.

Acknowledgements
The authors acknowledge Haoyang Wu, Hao-Wei Pang, and Xiaorui Dong
for their insightful conversations when initially forming the central ideas of
fastprop.

Disclaimer
This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor

any agency thereof, nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

Author contributions
Initial ideation of fastprop was a joint effort of Burns and Green.
Implementation, benchmarking, and writing were done by Burns.

Funding
’Open Access funding provided by the MIT Libraries’. This material is based
upon work supported by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research, Department of Energy
Computational Science Graduate Fellowship under Award Number
DE-SC0023112.

Availability of data and materials
fastprop is Free and Open Source Software; anyone may view, modify,
and execute it according to the terms of the MIT license. See github.com/
jacksonburns/fastprop for more information. All data used in the Benchmarks
shown above is publicly available under a permissive license. See the
benchmarks directory at the fastprop GitHub page for instructions on
retrieving each dataset and preparing it for use with fastprop, where
applicable.

Declarations

 Competing interests
None.

Received: 25 October 2024 Accepted: 13 April 2025

References
	1.	 Muratov EN, Bajorath J, Sheridan RP et al (2020) QSAR without borders.

Chem Soc Rev 49:3525–3564. https://​doi.​org/​10.​1039/​D0CS0​0098A
	2.	 Wiener H (1947) Structural determination of paraffin boiling points. J Am

Chem Soc 69:17–20. https://​doi.​org/​10.​1021/​ja011​93a005
	3.	 Estrada’ E, Torres’ L, Rodriguez’ L (1998) An atom-bond connectivity index:

Modelling the. Enthalpy of formation of alkanes. Ind J Chem 37:849–855
	4.	 Todeschini R, Consonni V (2009) Molecular descriptors for

chemoinformatics. Methods and principles in medicinal chemistry. John
Wiley & Sons, Hoboken, p 1252. https://​doi.​org/​10.​1002/​97835​27628​766

	5.	 Arockiaraj M, Paul D, Clement J et al (2023) Novel molecular hybrid
geometric-harmonic-Zagreb degree based descriptors and their efficacy
in QSPR studies of polycyclic aromatic hydrocarbons. SAR QSAR Environ
Res 34:569–589. https://​doi.​org/​10.​1080/​10629​36x.​2023.​22391​49

	6.	 Ma J, Sheridan RP, Liaw A et al (2015) Deep neural nets as a method
for quantitative structure-activity relationships. J Chem Inf Model
55:263–274. https://​doi.​org/​10.​1021/​ci500​747n

	7.	 Coley CW, Barzilay R, Jaakkola TS et al (2017) Prediction of organic
reaction outcomes using machine learning. ACS Cent Sci 3:434–443.
https://​doi.​org/​10.​1021/​acsce​ntsci.​7b000​64

	8.	 Yang K, Swanson K, Jin W et al (2019) Analyzing learned molecular
representations for property prediction. J Chem Inf Model 59:3370–3388.
https://​doi.​org/​10.​1021/​acs.​jcim.​9b002​37

	9.	 Heid E, Greenman KP, Chung Y et al (2024) Chemprop: a machine
learning package for chemical property prediction. J Chem Inf Model
64:9–17. https://​doi.​org/​10.​1021/​acs.​jcim.​3c012​50

	10.	 Song Y, Zheng S, Niu Z, et al (2021) Communicative representation
learning on attributed molecular graphs. In: Proceedings of the

https://doi.org/10.1186/s13321-025-01013-4
https://doi.org/10.1186/s13321-025-01013-4
https://doi.org/10.1039/D0CS00098A
https://doi.org/10.1021/ja01193a005
https://doi.org/10.1002/9783527628766
https://doi.org/10.1080/1062936x.2023.2239149
https://doi.org/10.1021/ci500747n
https://doi.org/10.1021/acscentsci.7b00064
https://doi.org/10.1021/acs.jcim.9b00237
https://doi.org/10.1021/acs.jcim.3c01250

Page 11 of 11Burns and Green ﻿Journal of Cheminformatics (2025) 17:73 	

twenty-ninth international joint conference on artificial intelligence.
Yokohama, Yokohama, Japan. 2021. 10.5555/3491440.3491832

	11.	 Zhou G, Gao Z, Ding Q, et al. Uni-mol: A universal 3D molecular
representation learning framework. In: The eleventh international
conference on learning representations. 2023. 10.26434/
chemrxiv-2022-jjm0j

	12.	 Chen J, Schwaller P. Molecular hypergraph neural networks. 2023. https://​
doi.​org/​10.​48550/​arXiv.​2312.​13136

	13.	 Zhao B, Xu W, Guan J, Zhou S. Molecular property prediction based on
graph structure learning. 2023. arXiv preprint arXiv:​2312.​16855

	14.	 Wang Z, Jiang T, Wang J, Xuan Q. Multi-modal representation learning
for molecular property prediction: sequence, graph, geometry. 2024.
10.48550/ARXIV.2401.03369

	15.	 Zhu Y, Chen D, Du Y et al (2024) Molecular contrastive pretraining with
collaborative featurizations. J Chem Inf Model 64:1112–1122. https://​doi.​
org/​10.​1021/​acs.​jcim.​3c014​68

	16.	 Schaduangrat N, Anuwongcharoen N, Charoenkwan P, Shoombuatong
W (2023) DeepAR: a novel deep learning-based hybrid framework for the
interpretable prediction of androgen receptor antagonists. J Cheminform
15:50. https://​doi.​org/​10.​1186/​s13321-​023-​00721-z

	17.	 Karpov P, Godin G, Tetko IV (2020) Transformer-CNN: Swiss knife for QSAR
modeling and interpretation. J Cheminform 12:17. https://​doi.​org/​10.​
1186/​s13321-​020-​00423-w

	18.	 van Tilborg D, Brinkmann H, Criscuolo E et al (2024) Deep learning for
low-data drug discovery: hurdles and opportunities. ChemRxiv. https://​
doi.​org/​10.​26434/​chemr​xiv-​2024-​w0wvl

	19.	 Moriwaki H, Tian Y-S, Kawashita N, Takagi T (2018) Mordred: a molecular
descriptor calculator. J Cheminform 10:4. https://​doi.​org/​10.​1186/​
s13321-​018-​0258-y

	20.	 Falcon W. The PyTorch Lightning team. PyTorch Lightning. 2019. 10.5281/
zenodo.3828935

	21.	 Weininger D (1988) SMILES, a chemical language and information system.
1. Introduction to methodology and encoding rules. J Chem Inf Comput
Sci 28:31–36. https://​doi.​org/​10.​1021/​ci000​57a005

	22.	 Sosnin S, Karlov D, Tetko IV, Fedorov MV (2019) Comparative study of
multitask toxicity modeling on a broad chemical space. J Chem Inf Model
59:1062–1072. https://​doi.​org/​10.​1021/​acs.​jcim.​8b006​85

	23.	 McGibbon M, Shave S, Dong J et al (2023) From intuition to AI: evolution
of small molecule representations in drug discovery. Brief Bioinform
25:bbad422. https://​doi.​org/​10.​1093/​bib/​bbad4​22

	24.	 Ramakrishnan R, Hartmann M, Tapavicza E, von Liliendfeld O (2015)
Electronic spectra from TDDFT and machine learning in chemical space. J
Chem Phys 10(1063/1):4928757

	25.	 Comesana AE, Huntington TT, Scown CD et al (2022) A systematic
method for selecting molecular descriptors as features when training
models for predicting physiochemical properties. Fuel 321:123836.
https://​doi.​org/​10.​1016/j.​fuel.​2022.​123836

	26.	 Wu J, Wang S, Zhou L et al (2020) Deep-learning architecture in QSPR
modeling for the prediction of energy conversion efficiency of solar cells.
Ind Eng Chem Res 59:18991–19000. https://​doi.​org/​10.​1021/​acs.​iecr.​
0c038​80

	27.	 Esaki T, Ohashi R, Watanabe R et al (2019) Computational model to
predict the fraction of unbound drug in the brain. J Chem Inf Model
59:3251–3261. https://​doi.​org/​10.​1021/​acs.​jcim.​9b001​80

	28.	 Yalamanchi KK, Kommalapati S, Pal P et al (2023) Uncertainty
quantification of a deep learning fuel property prediction model. Appl
Energy Combust Sci 16:100211. https://​doi.​org/​10.​1016/j.​jaecs.​2023.​
100211

	29.	 Lundberg S, Lee S-I. A unified approach to interpreting model
predictions. 2017. https://​doi.​org/​10.​48550/​ARXIV.​1705.​07874

	30.	 Wu Z, Ramsundar B, Feinberg EN, et al. MoleculeNet: a benchmark for
molecular machine learning. 2018. 10.48550/arXiv.1703.00564

	31.	 Ramakrishnan R, Dral P, Rupp M, von Liliendfeld O (2014) Quantum
chemistry structures and properties of 134 kilo molecules. Sci Data.
https://​doi.​org/​10.​1038/​sdata.​2014.​22

	32.	 Burns J, Spiekermann K, Bhattacharjee H et al (2023) Machine learning
validation via rational dataset sampling with astartes. J Open Sour Softw
8:5996. https://​doi.​org/​10.​21105/​joss.​05996

	33.	 Notwell JH, Wood MW. ADMET property prediction through
combinations of molecular fingerprints. 2023. https://​doi.​org/​10.​48550/​
arXiv.​2310.​00174

	34.	 Schaduangrat N, Anuwongcharoen N, Charoenkwan P, Shoombuatong
W (2023) DeepAR: a novel deep learning-based hybrid framework for the
interpretable prediction of androgen receptor antagonists. J Cheminform
15:50. https://​doi.​org/​10.​1186/​s13321-​023-​00721-z

	35.	 Saldana DA, Starck L, Mougin P et al (2011) Flash point and cetane
number predictions for fuel compounds using quantitative structure
property relationship (QSPR) methods. Energy Fuels 25:3900–3908.
https://​doi.​org/​10.​1021/​ef200​795j

	36.	 Das DD, John St.PC, McEnally CS et al (2018) Measuring and predicting
sooting tendencies of oxygenates, alkanes, alkenes, cycloalkanes, and
aromatics on a unified scale. Combust Flame 190:349–364. https://​doi.​
org/​10.​1016/j.​combu​stfla​me.​2017.​12.​005

	37.	 Broccatelli F, Carosati E, Neri A et al (2011) A novel approach for
predicting p-glycoprotein (ABCB1) inhibition using molecular interaction
fields. J Med Chem 54:1740–1751. https://​doi.​org/​10.​1021/​jm101​421d

	38.	 Huang K, Fu T, Gao W, et al. Therapeutics data commons: Machine
learning datasets and tasks for therapeutics. CoRR abs/2102.09548. 2021.
https://​doi.​org/​10.​48550/​arXiv.​2102.​09548

	39.	 Tetko IV, van Deursen R, Godin G (2024) Be aware of overfitting by
hyperparameter optimization! J Cheminform 16:139. https://​doi.​org/​10.​
1186/​s13321-​024-​00934-w

	40.	 Burns JW, Rogers DM (2023) QuantumScents: quantum-mechanical
properties for 3.5k olfactory molecules. J Chem Inf Model 63:7330–7337.
https://​doi.​org/​10.​1021/​acs.​jcim.​3c013​38

	41.	 Szymański P, Kajdanowicz T. https://​proce​edings.​mlr.​press/​v74/​szyma%​
C5%​84ski​17a.​html A network perspective on stratification of multi-
label data. In: Luís Torgo PB, Moniz N (eds) Proceedings of the first
international workshop on learning with imbalanced domains: Theory
and applications. PMLR, 2017; pp 22–35

	42.	 Carbonell P, Carlsson L, Faulon J-L (2013) Stereo signature molecular
descriptor. J Chem Inf Model 53:887–897. https://​doi.​org/​10.​1021/​ci300​
584r

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.48550/arXiv.2312.13136
https://doi.org/10.48550/arXiv.2312.13136
http://arxiv.org/abs/2312.16855
https://doi.org/10.1021/acs.jcim.3c01468
https://doi.org/10.1021/acs.jcim.3c01468
https://doi.org/10.1186/s13321-023-00721-z
https://doi.org/10.1186/s13321-020-00423-w
https://doi.org/10.1186/s13321-020-00423-w
https://doi.org/10.26434/chemrxiv-2024-w0wvl
https://doi.org/10.26434/chemrxiv-2024-w0wvl
https://doi.org/10.1186/s13321-018-0258-y
https://doi.org/10.1186/s13321-018-0258-y
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1021/acs.jcim.8b00685
https://doi.org/10.1093/bib/bbad422
https://doi.org/10.1016/j.fuel.2022.123836
https://doi.org/10.1021/acs.iecr.0c03880
https://doi.org/10.1021/acs.iecr.0c03880
https://doi.org/10.1021/acs.jcim.9b00180
https://doi.org/10.1016/j.jaecs.2023.100211
https://doi.org/10.1016/j.jaecs.2023.100211
https://doi.org/10.48550/ARXIV.1705.07874
https://doi.org/10.1038/sdata.2014.22
https://doi.org/10.21105/joss.05996
https://doi.org/10.48550/arXiv.2310.00174
https://doi.org/10.48550/arXiv.2310.00174
https://doi.org/10.1186/s13321-023-00721-z
https://doi.org/10.1021/ef200795j
https://doi.org/10.1016/j.combustflame.2017.12.005
https://doi.org/10.1016/j.combustflame.2017.12.005
https://doi.org/10.1021/jm101421d
https://doi.org/10.48550/arXiv.2102.09548
https://doi.org/10.1186/s13321-024-00934-w
https://doi.org/10.1186/s13321-024-00934-w
https://doi.org/10.1021/acs.jcim.3c01338
https://proceedings.mlr.press/v74/szyma%C5%84ski17a.html
https://proceedings.mlr.press/v74/szyma%C5%84ski17a.html
https://doi.org/10.1021/ci300584r
https://doi.org/10.1021/ci300584r

	Generalizable, fast, and accurate DeepQSPR with fastprop
	Abstract
	Scientific Contribution
	Introduction
	Historical approaches
	Shift to learned representations
	Limitations

	Implementation
	Example usage

	Results and discussion
	Benchmark methods
	Performance metrics

	Benchmark results
	QM9
	Pgp
	ARA​
	Flash
	YSI
	PAH

	Limitations and future work
	Negative results
	Delta learning with fubrain
	fastprop fails on QuantumScents

	Execution time
	Coverage of descriptors
	Interpretability
	Availability

	Acknowledgements
	References

