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Abstract 

Quantitative Structure–Property Relationship studies (QSPR), often referred to interchangeably as QSAR, seek to estab-
lish a mapping between molecular structure and an arbitrary target property. Historically this was done on a target-
by-target basis with new descriptors being devised to specifically map to a given target. Today software packages exist 
that calculate thousands of these descriptors, enabling general modeling typically with classical and machine learning 
methods. Also present today are learned representation methods in which deep learning models generate a target-
specific representation during training. The former requires less training data and offers improved speed and inter-
pretability while the latter offers excellent generality, while the intersection of the two remains under-explored. This 
paper introduces fastprop, a software package and general Deep-QSPR framework that combines a cogent set 
of molecular descriptors with deep learning to achieve state-of-the-art performance on datasets ranging from tens 
to tens of thousands of molecules. fastprop provides both a user-friendly Command Line Interface and highly 
interoperable set of Python modules for the training and deployment of feedforward neural networks for property 
prediction. This approach yields improvements in speed and interpretability over existing methods while statisti-
cally equaling or exceeding their performance across most of the tested benchmarks. fastprop is designed 
with Research Software Engineering best practices and is free and open source, hosted at github.com/jacksonburns/
fastprop.

Scientific Contribution 

fastprop is a QSPR framework that achieves state-of-the-art accuracy on datasets of all sizes without sacrificing 
speed or interpretability. As a software package fastprop emphasizes Research Software Engineering best prac-
tices, reproducibility, and ease of use for experts across domains.
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Introduction
Chemists have long sought a method to relate only the 
connectivity of a molecule to its corresponding molecu-
lar properties. The Quantitative Structure–Property 
Relationship (QSPR) would effectively solve the for-
ward problem of molecular engineering and enable 

rapid development. Reviews on the topic are numerous 
and cover an enormous range of scientific subdomains; 
a comprehensive review of the literature is beyond the 
scope of this publication, though the work of Muratov 
and coauthors [1] provides an excellent starting point for 
further review. An abridged version of the history behind 
QSPR is presented here to contextualize the approach of 
fastprop.
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Historical approaches
Early in the history of computing, limited computational 
power meant that significant human expertise was 
required to guide QSPR models toward effectiveness. 
This materialized in the form of bespoke molecular 
descriptors - scalar-valued functions which operate on 
the molecular graph in such a way to reflect relevant 
structural and electronic information. Examples include 
rudimentary counting descriptors, the Wiener Index 
in 1947 [2], Atom-Bond Connectivity indices in 1998 
[3], and many others [4]. To this day descriptors are 
still being developed - the geometric-harmonic-Zagreb 
degree based descriptors were proposed by Arockiaraj 
et  al.  in 2023 [5]. This time consuming technique is of 
course highly effective but the dispersed nature of this 
chemical knowledge means that these descriptors are 
spread out throughout many journals and domains with 
no single source to compute them all.

The range of regression techniques applied to these 
descriptors has also been limited. As explained by Mura-
tov et al. [1] QSPR uses linear methods (some of which 
are now called machine learning) almost exclusively. 
The over-reliance on this category of approaches may be 
due to priorities; domain experts seek interpretability in 
their work, especially given that the inputs are physically 
meaningful descriptors, and linear methods lend them-
selves well to this approach. Practice may also have been 
a limitation, since historically training and deploying 
neural networks required more computer science exper-
tise than linear methods.

All of this is not to say that Deep Learning (DL) has 
never been applied to QSPR. Applications of DL to QSPR, 
i.e.  DeepQSPR, were attempted throughout this time 
period but focused on the use of molecular fingerprints 
rather than descriptors. This may be at least partially 
attributed to knowledge overlap between deep learning 
experts and this sub-class of descriptors. Molecular fin-
gerprints are bit vectors which encode the presence or 
absence of sub-structures in an analogous manner to the 
“bag of words” featurization strategy common to natural 
language processing. Experts have bridged this gap to 
open this subdomain and proved its effectiveness. In Ma 
and coauthors’ review of DL for QSPR [6], for example, 
it is claimed that DL with fingerprint descriptors is more 
effective than with molecular-level descriptors. They also 
demonstrate that DL outperforms or at least matches 
classical machine learning methods across a number of 
ADME-related datasets. The results of the present study 
demonstrate that molecular-level descriptors actually are 
effective and reaffirm that DL matches or outperforms 
baselines, in this case linear.

Despite their differences, both classical- and Deep-
QSPR shared a lack of generality. Beyond the domains 

of chemistry where many of the descriptors had been 
originally devised, models were either unsuccessful or 
more likely simply never evaluated. As interest began to 
shift toward the prediction of molecular properties which 
were themselves descriptors (i.e.  derived from quantum 
mechanics simulations) - to which none of the devised 
molecular descriptors were designed to be correlated - 
learned representations (LRs) emerged.

Shift to learned representations
The exact timing of the transition from fixed descrip-
tors (molecular-level or fingerprints) to LRs is difficult to 
ascertain [7]. Among the most cited at least is the work 
of Yang and coworkers in 2019 [8] which laid the ground-
work for applying LRs to “Property Prediction” - QSPR 
by another name. In short, the basic idea is to initialize 
a molecular graph with only information about its bonds 
and atoms such as order, aromaticity, atomic number, etc. 
Then via a Message Passing Neural Network (MPNN) 
architecture, which is able to aggregate these atom- and 
bond-level features into a vector in a manner which can 
be updated, the ‘best’ representation of the molecule is 
found during training. This method proved highly accu-
rate and achieved the generality apparently lacking in 
descriptor-based modeling. The modern version of the 
corresponding software package Chemprop (described in 
[9]) has become a de facto standard for property predic-
tion, partially because of the significant development and 
maintenance effort supporting that open source software 
project.

Following the initial success of Chemprop numerous 
representation learning frameworks have been devised, 
all of which slightly improve performance. The Com-
municative-MPNN (CMPNN) framework is a modified 
version of Chemprop with a different message passing 
scheme to increase the interactions between node and 
edge features [10]. Uni-Mol incorporates 3D informa-
tion and relies extensively on transformers [11]. In a “full 
circle moment” architectures like the Molecular Hyper-
graph Neural Network (MHNN) have been devised to 
learn representations for specific subsets of chemistry, 
in that case optoelectronic properties [12]. Myriad oth-
ers exist including GSL-MPP (accounts for intra-dataset 
molecular similarity) [13], SGGRL (trains three repre-
sentations simultaneously using different input formats) 
[14], and MOCO (multiple representations and contras-
tive pretraining) [15].

Limitations
Despite the continuous incremental performance 
improvements, this area of research has serious 
drawbacks. A thru-theme in these frameworks is the 
increasing complexity of DL techniques and consequent 
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un-interpretability. This also means that actually using 
these methods to do research on real-world dataset 
requires varying amounts of DL expertise, creating a rift 
between domain experts and these methods. Perhaps the 
most significant failure is the inability to achieve good 
predictions on small1 datasets. This is a long-standing 
limitation, with the original Chemprop paper stating 
that linear models are about on par with Chemprop for 
datasets with fewer than 1000 entries [8].

This limitation is especially challenging because it is 
a fundamental drawback of the LR approach. Without 
the use of advanced DL techniques like pre-training or 
transfer learning, the model is essentially starting from 
near-zero information every time a model is created. This 
inherently requires larger datasets to allow the model 
to effectively ‘re-learn’ the chemical intuition which 
was built in to descriptor- and fixed fingerprint-based 
representations.

Efforts are of course underway to address this 
limitation, though no clear universal solution has 
emerged. One simple but incredibly computationally 
expensive approach is to use delta learning, which 
artificially increases dataset size by generating all possible 
pairs of molecules from the available data (thus squaring 
the size of the dataset). This was attempted by Nalini 
et al. [16], who used an unmodified version of Chemprop 
referred to as ‘DeepDelta’ to predict differences in 
molecular properties for pairs of molecules. They achieve 
increased performance over standard LR approaches but 
lost the ability to train on large datasets due to simple 
runtime limitations. Another promising line of inquiry is 
the Transformer-CNN model of Karpov et al. [17] which 
leverages a pre-trained transformer model for prediction, 
circumventing the need for massive datasets and offering 
additional benefits in interpretability. This model is 
unique in that it operates directly on the SMILES 
representation of the molecule, also offering benefits in 
structural attribution of predictions. Due to the extensive 
pre-training this model is often more performant on 
small datasets than alternatives like ChemProp with 
the small additional cost of data augmentation. Other 
increasingly complex approaches are discussed in the 
outstanding review by van Tilborg et al. [18].

While iterations on LRs and novel approaches to low-
data regimes have been in development, the classical 
QSPR community has continued their work. A turning 
point in this domain was the release of mordred, a fast 
and well-developed package capable of calculating more 
than 1600 molecular descriptors [19]. Critically this 

package was fully open source and written in Python, 
allowing it to readily interoperate with the world-class 
Python DL software ecosystem that greatly benefitted the 
LR community. Despite previous claims that molecular 
descriptors cannot achieve generalizable QSPR in 
combination with DL, the opposite is shown here with 
fastprop.

Implementation
At its core the fastprop ‘architecture’ is simply 
the mordred molecular descriptor calculator2 [19] 
connected to a Feedforward Neural Network (FNN) 
implemented in PyTorch Lightning [20] (Fig.  1) - an 
existing approach formalized into an easy-to-use, 
reliable, and correct implementation. fastprop is 
highly modular for seamless integration into existing 
workflows and includes an end-to-end Command 
Line Interface (CLI) for general use. In the latter mode 
the user simply specifies a set of SMILES [21], a linear 
textual encoding of molecules, and their corresponding 
target values. fastprop optionally standardizes 
input molecule and then automatically calculates and 
caches the corresponding molecular descriptors with 
mordred, re-scales both the descriptors and the targets 
appropriately, and then trains an FNN to predict the 
indicated targets. By default this FNN is two hidden 
layers with 1800 neurons each connected by ReLU 
activation functions, though the configuration can 
be readily changed via the CLI or configuration file. 
Multitask regression and multi-label classification are 
also supported and configurable in the same manner, 
the former having been shown to significantly improve 
predictive power in cheminformatics models [22]. 
fastprop principally owes its success to the cogent 

Fig. 1  fastprop logo

1  What constitutes a ‘small’ dataset is decidedly not agreed upon. For 
the purposes of this study, it will be used to refer to datasets with ~1000 
molecules or fewer, which the authors believe better reflects the size of real-
world datasets.

2  The original mordred package is no longer maintained. fastprop 
uses a fork of mordred called mordredcommunity that is maintained 
by community-contributed patches (see github.​com/​Jacks​onBur​ns/​mordr​
ed-​commu​nity). Others have re-implemented the mordred calculator as 
osmordred which can be used in fastprop via the CLI.

https://github.com/JacksonBurns/mordred-community
https://github.com/JacksonBurns/mordred-community
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set of descriptors assembled by the developers of 
mordred. Multiple descriptor calculators from the 
very thorough review by McGibbon et  al. [23] could be 
used instead, though none are as readily interoperable as 
mordred. Additionally, the ease of training FNNs with 
modern software like PyTorch Lightning and the careful 
application of Research Software Engineering best 
practices make fastprop as user friendly as the best-
maintained alternatives.

Fitting to molecular descriptors requires careful atten-
tion given that they can be highly correlated, often have 
enormous outliers exacerbated with re-scaling, and 
can be missing or infinite for some species. fastprop 
includes extensive, configurable data pre-processing 
steps to accommodate these limitations. First and fore-
most, users can opt to use a subset of 947 less-correlated 
( r < 0.95 on QM8 [24]) mordred descriptors, though 
this is usually unnessecary. Before training, all features 
are standardized to have mean of zero and variance of 
one. Missing features are then set to zero, equivalent to 
imputing with the mean value. Finally, descriptors having 
values larger than ± 3 are set to ± 3, analogous to Win-
sorization based on 3 standard deviations from the mean. 
Other common pre-processing transformations, such as 
the log10 function, are easily implemented when using 
fastprop as a Python module.

This trivially simple idea has been alluded to in previ-
ous published work but neither described in detail nor 
lauded for its generalizability or accuracy. Comesana 
and coauthors, based on a review of the biofuels prop-
erty prediction landscape, claimed that methods (DL or 
otherwise) using large numbers of molecular descriptors 
were unsuccessful, instead proposing a feature selec-
tion method [25]. As a baseline in a study of photovol-
taic property prediction, Wu et  al.  reported using the 
mordred descriptors in combination with both a Ran-
dom Forest and an Artificial Neural Network, though in 
their hands the performance is worse than their bespoke 
model and no code is available for inspection [26].

Others have also incorporated mordred descriptors 
into their modeling efforts, though none with a simple 
FNN as described above. Esaki and coauthors started a 
QSPR study with mordred descriptors for a dataset of 
small molecules, but via an enormously complex mode-
ling pipeline (using only linear methods) removed all but 
53 [27]. Yalamanchi and coauthors used DL on mordred 
descriptors as part of a two-headed representation, but 
their network architecture was sequential hidden layers 
decreasing in size to only 12 features [28] as opposed to 
the constant 1800 in fastprop.

The reason fastprop stands out from these studies 
and contradicts previous reports is for the simple 
reason that it works. As discussed at length in the 
Results & Discussion section, this approach statistically 
matches or exceeds the performance of leading LR 
approaches on common benchmark datasets and 
bespoke QSPR models on small real-world datasets. 
fastprop also overcomes the limitations of LRs 
discussed above. The FNN architecture and use of 
physically meaningful molecular descriptors enables 
the application of SHAP [29], a common tool for 
feature importance analysis (see Interpretability). The 
simplicity of the framework enables domain experts to 
apply it easily and makes model training dramatically 
faster than LRs. Most importantly this approach is 
successful on the smallest of real-world datasets. By 
starting from such an informed initialization the FNN 
can be readily trained on datasets with as few as forty 
training examples (see PAHs).

Example usage
fastprop is built with ease of use at the forefront 
of design. To that end, input data is accepted in the 
immensely popular Comma-Separated Values (CSV) 
format, editable with all modern spreadsheet editors 
and completely platform independent. An example 
specify some properties for benzene is shown below, 
including its SMILES string:
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fastprop itself is accessed via the command line 
interface, with configuration parameters passed as 
either command line arguments or in an easily editable 
configuration file:

Training, prediction, and feature importance are 
then readily accessible via the commands fastprop 
train, fastprop predict, or fastprop shap, 
respectively. The fastprop GitHub repository contains 
a Jupyter notebook runnable from the browser via Google 
colab which allows users to actually execute the above 
example, which is also discussed at length in the PAHs 
section, as well as further details about each configurable 
option.

Results and discussion
There are a number of established molecular property 
prediction benchmarks commonly used in LR studies, 
especially those standardized by MoleculeNet [30]. 
Principal among them are QM8 [24] and QM9 [31], 
often regarded as the standard benchmark for property 
prediction. These are important benchmarks and QM9 
is included for completeness, though the enormous size 
and rich coverage of chemical space in the QM9 dataset 
means that nearly all model architectures are highly 
accurate, including fastprop.

Real world experimental datasets, particularly those 
common in QSPR studies, often number in the hundreds. 
To demonstrate the applicability of fastprop to these 
regimes, many smaller datasets are selected including 
some from the QSPR literature that are not established 
benchmarks. These studies relied on more complex 
and slow modeling techniques (ARA) or the design of 
a bespoke descriptor (PAHs) and have not yet come to 
rely on learned representations as a go-to tool. In these 
data-limited regimes where LRs sometimes struggle, 
fastprop and its intuition-loaded initialization are 
highly powerful. To emphasize this point further, the 
benchmarks are presented in order of dataset size, 
descending.

Two additional benchmarks showing the limitations 
of fastprop are included after the main group of 
benchmarks: Fubrain and QuantumScents. The former 
demonstrates how fastprop can outperform LRs 
but still trail approaches like delta learning. The later is 
a negative result showing how fastprop can fail on 
especially difficult, atypical targets.

All of these fastprop benchmarks are reproducible, 
and complete instructions for installation, data retrieval 
and preparation, and training are publicly available on 
the fastprop GitHub repository at github.​com/​jacks​
onbur​ns/​fastp​rop.

Benchmark methods
The method for splitting data into training, validation, 
and testing sets varies on a per-study basis and is 
described in each sub-section. Sampling is performed 
using the astartes package [32] which implements a 
variety of sampling algorithms and is highly reproducible. 
For datasets containing missing target values or invalid 
SMILES strings, those entries were dropped, as is the 
default behavior of fastprop.

Results for fastprop are reported as the average 
value of a metric and its standard deviation across a num-
ber of repetitions (repeated re-sampling of the dataset). 
The number of repetitions is chosen to either match ref-
erenced literature studies or else increased from two until 
the performance no longer meaningfully changes. Note 
that this is not the same as cross-validation. Each section 
also includes the performance of a zero-layer (i.e.  linear 
regression) network as a baseline to demonstrate the 
importance of non-linearity in a deep NN.

For performance metrics retrieved from literature 
it is assumed that the authors optimized their 
respective models to achieve the best possible results; 

https://github.com/jacksonburns/fastprop
https://github.com/jacksonburns/fastprop
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therefore, fastprop metrics are reported after 
model optimization using the fastprop train... 
--optimize option. When results are generated for 
this study using Chemprop, the default settings are used 
except that the number of epochs is increased to allow 
the model to converge and batch size is increased to 
match dataset size and speed up training. Chemprop was 
chosen as a point of comparison throughout this study 
since it is among the most accessible and well-maintained 
software packages for molecular machine learning.

When reported, execution time is as given by the 
unix time command using Chemprop version 1.6.1 
on Python 3.8 and includes the complete invocation of 
Chemprop, i.e.  time chemprop_train..... The 
insignificant time spent manually collating Chemprop 
results (Chemprop does not natively support 
repetitions) is excluded. fastprop is run on version 
1.0.6 using Python 3.11 and timing values are reported 
according to its internal time measurement which 
was verified to be nearly identical to the Unix time 
command. The coarse comparison of the two packages 
is intended to emphasize the scaling of LRs and Deep-
QSPR and that fastprop is, generally speaking, much 
faster. All models trained for this study were run on a 
Dell Precision series laptop with an NVIDIA Quadro 
RTX 4000 GPU and Intel Xeon E-2286 M CPU.

Because the diversity of methods across these 
different datasets complicates inter-dataset 
comparisons, an additional set of benchmarks using 
an identical method across all datasets is included in 
Additional File 1, Table  S1. This benchmark compares 
fastprop, Chemprop, and the aforementioned 
Transformer-CNN, which is especially suitable for 
the small datasets included therein. No long-form 
commentary on benchmark results is provided, though 
the conclusions are largely the same as those shown 
here.

Performance metrics
The evaluation metrics used in each of these bench-
marks are chosen to match literature precedent, par-
ticularly as established by MoleculeNet [30], where 
available. It is common to use scale-dependent metrics 
that require readers to understand the relative magni-
tude of the target variables. The authors prefer more 
readily interpretable metrics such as (Weighted) Mean 
Absolute Percentage Error (W/MAPE) and are included 
where relevant.

All metrics are defined according to their typical for-
mulae which are readily available online and are imple-
mented in common software packages. Those presented 
here are summarized below, first for regression:

•	 Mean Absolute Error (MAE): Absolute difference 
between predictions and ground truth averaged 
across dataset; scale-dependent.

•	 Root Mean Squared Error (RMSE): Absolute 
differences squared and then averaged; scale-
dependent.

•	 Mean Absolute Percentage Error (MAPE): MAE 
except that differences are relative (i.e. divided by the 
ground truth); scale-independent, range 0 (best) and 
up.

•	 Weighted Mean Absolute Percentage Error 
(WMAPE): MAPE except the average is a weighted 
average, where the weight is the magnitude of the 
ground truth; scale-independent, range 0 (best) and 
up.

•	 Coefficient of Determination (R2): Proportion of 
variance explained; scale-independent, range 0 
(worst) to 1 (best).

and classification: 

•	 Area Under the Receiver Operating Curve (AUROC, 
AUC, or ROC-AUC): Summary statistic combining 
all possible classification errors; scale-independent, 
range 0.5 (worst, random guessing) to 1.0 (perfect 
classifier).

•	 Accuracy: Fraction of correct classifications, 
expressed as a percentage; scale-independent, range 
0 (worst) to 100 (perfect classifier).

Benchmark results
See Table 1 for a summary of all the results. Subsequent 
sections explore each in greater detail. For benchmarks 
with statistics, practically significant best performers are 
shown in bold.

Statistical comparisons of fastprop to Chemprop 
(shown in the p column) are performed using the 
non-parametric Wilcoxon-Mann-Whitney Test as 
implemented in GNumeric. Values are only shown for 
results generated in this study which are known to be 
performed using the same methods. Only the results 
for Flash and PAH are statistically significant at 95% 
confidence (p<0.05), see benchmark-specific subsections 
for confidence intervals.

QM9
Originally described in Scientific Data [31] and perhaps 
the most established property prediction benchmark, 
Quantum Machine 9 (QM9) provides quantum 
mechanics derived descriptors for many small molecules 
containing one to nine heavy atoms, totaling 133,885. The 
data was retrieved from MoleculeNet [30] in a readily 
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usable format. As a point of comparison, performance 
metrics are retrieved from the paper presenting the 
UniMol architecture [11] previously mentioned. In 
that study they trained on only three especially difficult 
targets (homo, lumo, and gap) using scaffold-based 
splitting (a more challenging alternative to random 
splitting), reporting mean and standard deviation across 
3 repetitions.
fastprop achieves 0.0060 ± 0.0002 mean absolute 

error, whereas Chemprop achieves 0.00814 ± 0.00001 
and the UniMol framework manages 0.00467 ± 
0.00004. This places the fastprop framework ahead 
of previous learned representation approaches but still 
trailing UniMol. This is not completely unexpected 
since UniMol encodes 3D information from the dataset 
whereas Chemprop and fastprop use only 2D. Future 
work could evaluate the use of 3D-based descriptors to 
improve fastprop performance in the same manner 
that UniMol has with LRs. All methods are better than a 
purely linear model trained on the molecular descriptors, 
which manages only a 0.0095 ± 0.0006 MAE.

Pgp
First reported in 2011 by Broccatelli and coworkers [37], 
this dataset has since become a standard benchmark and 
is included in the Therapeutic Data Commons (TDC) 
[38] model benchmarking suite. The dataset maps 1,275 
small molecule drugs to a binary label indicating if 
they inhibit P-glycoprotein (Pgp). TDC serves this data 
through a Python package, but due to installation issues 
the data was retrieved from the original study instead. 
The recommended splitting approach is a 70/10/20 
scaffold-based split which is done here with 4 replicates.

The model in the original study uses a molecular 
interaction field but has since been surpassed by other 
models. According to TDC the current leader [33] on this 
benchmark has achieved an AUROC of 0.938 ± 0.0023. 
On the same leaderboard Chemprop [8] achieves 0.886 ± 

0.016 with the inclusion of additional molecular features. 
fastprop yet again approaches the performance of the 
leading methods and outperforms Chemprop, here with 
an AUROC of 0.903 ± 0.033 and an accuracy of 83.6 ± 
4.6%. Remarkably, the linear QSPR model outperforms 
both Chemprop and fastprop, approaching the 
performance of the current leader with an AUROC of 
0.917 ± 0.016 and an accuracy of 83.8 ± 3.9%.

ARA​
Compiled by Schaduangrat et al. in 2023 [34], this dataset 
maps 842 small molecules to a binary label indicating 
if the molecule is an Androgen Receptor Antagonist 
(ARA). The reference study introduced DeepAR, a highly 
complex modeling approach, which achieved an accuracy 
of 91.1% and an AUROC of 0.945.

For this study an 80/10/10 random splitting is repeated 
four times on the dataset since no analogous split to the 
reference study can be determined. Chemprop takes 
16  min and 55  s to run on this dataset and achieves 
only 82.4 ± 2.0% accuracy and 0.898 ± 0.022 AUROC. 
fastprop takes only 1  min and 54  s (1  min and 39  s 
for descriptor calculation) and is competitive with the 
reference study in performance, achieving a 88.2 ± 3.7% 
accuracy and 0.935 ± 0.034 AUROC. The purely linear 
QSPR model falls far behind these methods with a 71.8 ± 
6.6% accuracy and 0.824 ± 0.052 AUROC.

Flash
First assembled and fitted to by Saldana and coauthors 
[35] the dataset (Flash) includes around 632 entries, 
primarily alkanes and some oxygen-containing 
compounds, and their literature-reported flash point. 
The reference study reports the performance on only one 
repetition, but manually confirms that the distribution of 
points in the three splits follows the parent dataset. The 
split itself was a 70/20/10 random split, which is repeated 
four times for this study.

Table 1  Summary of benchmark results, best state-of-the-art method vs. fastprop and Chemprop

a [11] b [33] c [34] d [35] e [36] f [5] * These reference results were generated for this study

Benchmark Samples Metric SOTA fastprop Chemprop p

QM9 133,885 MAE 0.0047a 0.0060 0.0081a ~

Pgp 1,275 AUROC 0.94b 0.90 0.89b ~

ARA​ 842 Accuracy 91c 88 82* 0.083

Flash 632 RMSE 13.2d 13.0 21.2* 0.021

YSI 442 MAE 22.3e 25.0 28.9* 0.29

PAH 55 R2 0.96f 0.97 0.59* 0.0012

3  See the TDC Pgp leaderboard  https://​tdcom​mons.​ai/​bench​mark/​admet_​
group/​03pgp/.

https://tdcommons.ai/benchmark/admet_group/03pgp/
https://tdcommons.ai/benchmark/admet_group/03pgp/
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Using a complex multi-model ensembling method, 
the reference study achieved an RMSE of 13.2, an MAE 
of 8.4, and an MAPE of 2.5%. fastprop matches this 
performance, achieving 13.0 ± 2.0 RMSE, 9.0 ± 0.5 MAE, 
and 2.7% ± 0.1% MAPE. Chemprop, however, struggles 
to match the accuracy of either method - it manages an 
RMSE of 21.2 ± 2.2, an MAE of 13.8 ± 2.1, and a MAPE 
of 3.99 ± 0.36%. This is worse than the performance of 
the linear QSPR model, with an RMSE of 16.1 ± 4.0, an 
MAE of 11.3 ± 2.9, and an MAPE of 3.36 ± 0.77%.
fastprop dramatically outperforms both methods 

in terms of training time. The reference model 
required significant manual intervention to create a 
model ensemble, so no single training time can be 
fairly identified. fastprop arrived at the indicated 
performance without any manual intervention in only 
30  s, 13 of which were spent calculating descriptors. 
Chemprop, in addition to not reaching the same level of 
accuracy, took 5 min and 44 s to do so - more than ten 
times the execution time of fastprop.

YSI
Assembled by Das and coauthors [36] from a collection of 
other smaller datasets, this dataset maps 442 molecular 
structures to a unified-scale Yield Sooting Index (YSI), 
a molecular property of interest to the combustion 
community. The reference study performs leave-one-out 
cross validation to fit a per-fragment contribution model, 
effectively a training size of >99%, without a holdout 
set. Though this is not standard practice and can lead 
to overly optimistic reported performance, the results 
will be carried forward regardless. The original study 
did not report overall performance metrics, so they have 
been re-calculated for this study using the predictions 
made by the reference model as provided on GitHub4. 
For comparison fastprop and Chemprop use a more 
typical 60/20/20 random split and 8 repetitions. Results 
are summarized in Table 2.
fastprop again outperforms Chemprop, in this 

case approaching the overly-optimistic performance of 
the reference model. Taking into account that reference 
model has been trained on a significantly larger amount 
of data, this performance is admirable. Also notable is 
the difference in training times. Chemprop takes 7  min 
and 2 s while fastprop completes in only 42 s, again a 
factor of ten faster. The linear QSPR model fails entirely, 
performing dramatically worse than all other models.

PAH
Originally compiled by Arockiaraj et al. [5] the Polycyclic 
Aromatic Hydrocarbons (PAH) dataset contains water/

octanol partition coefficients (logP) for 55 polycyclic 
aromatic hydrocarbons ranging in size from napthalene 
to circumcoronene. This size of this benchmark is an 
ideal case study for the application of fastprop. Using 
expert insight the reference study designed a novel set of 
molecular descriptors that show a strong correlation to 
logP, with correlation coefficients ranging from 0.96 to 
0.99 among the various new descriptors.

For comparison, fastprop and Chemprop are 
trained using 8 repetitions of a typical 80/10/10 random 
split - only 44 molecules in the training data. fastprop 
matches the performance of the bespoke descriptors 
with a correlation coefficient of 0.972 ± 0.025. This 
corresponds to an MAE of 0.19 ± 0.10 and an MAPE of 
2.5 ± 1.5%. Chemprop effectively fails on this dataset, 
achieving a correlation coefficient of only 0.59 ± 0.24, an 
MAE of 1.04 ± 0.33 (one anti-correlated outlier replicate 
removed). This is worse even than the purely linear QSPR 
model, which manages a correlation coefficient of 0.78 
± 0.22, an MAE of 0.59 ± 0.22, and an RMSE of 0.75 ± 
0.32. Despite the large parameter size of the fastprop 
model relative to the training data, it readily outperforms 
Chemprop in the small-data limit.

For this unique dataset, execution time trends are 
inverted. fastprop takes 1  min and 43  s, of which 
1  min and 31  s were spent calculating descriptors for 
these unusually large molecules. Chemprop completes in 
1 min and 16 s, faster overall but much slower compared 
with the training time of fastprop without descriptor 
calculation.

Limitations and future work
Negative results
The fastprop framework is not without its drawbacks. 
The two subsequent sections explore in greater detail 
two specific cases where fastprop loses out to existing 
methods, but some general notes about out-of-distribu-
tion predictions and overfitting are also included here. 
Like all machine learning methods, fastprop is not 
intended to make predictions outside of its training fea-
ture space. The use of molecular descriptors, which can 
become out-of-distribution, may exacerbate this problem 
but fastprop can optionally winsorize the descriptors 

Table 2  Accuracy of YSI predictions from Reference model [36], 
Linear QSPR model, fastprop, and Chemprop

Model MAE RMSE WMAPE

Reference 22.3 50 14

fastprop 25.0 ± 5.2 52 ± 20 13.6 ±1.3

Chemprop 28.9 ± 6.5 63 ± 14 16.4 ± 3.0

Linear 82 ± 39 180 ± 120 47.0 ± 2.3

4  Predictions are available at this perma​link to the CSV file on GitHub.

https://github.com/pstjohn/ysi-fragment-prediction/blob/bdf8b16a792a69c3e3e63e64fba6f1d190746abe/data/ysi_predictions.csv
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to counteract this issue. Additionally, hyperparameter 
optimization of machine learning models in cheminfor-
matics has been known to cause overfitting [39], espe-
cially on small datasets. Users should be cautious when 
optimizing fastprop models and rely on defaults when 
possible.

Delta learning with fubrain
First described by Esaki and coauthors, the Fraction 
of Unbound Drug in the Brain (Fubrain) dataset is 
a collection of 254 small molecule drugs and their 
corresponding experimentally measured unbound 
fraction in the brain, a critical metric for drug 
development [27]. This specific target in combination 
with the small dataset size makes this benchmark highly 
relevant for typical QSPR studies, particular via delta 
learning. DeepDelta [16] performed a 90/0/10 cross-
validation study of the Fubrain dataset in which the 
training and testing molecules were intra-combined to 
generate all possible pairs and then the differences in the 
property5 were predicted, rather than the absolute values, 
increasing the amount of training data by a factor of 300.

DeepDelta reported an RMSE of 0.830 ± 0.023 at 
predicting differences, whereas a typical Chemprop 
model trained to directly predict property values was only 
able to reach an RMSE of 0.965 ± 0.09 when evaluated on 
its capacity to predict property differences. fastprop 
is able to outperform Chemprop, though not DeepDelta, 
achieving an RMSE of 0.930 ± 0.029 when using the same 
splitting procedure above. It is evident that delta learning 
is still a powerful technique for regressing small datasets.

For completeness, the performance of Chemprop 
and fastprop when directly predicting the unbound 
fraction are also compared to the original study by 
Esaki and coauthors. Using both cross validation and 
and external test sets, they had an effective training/
validation/testing split of 0.64/0.07/0.28 which will 
be repeated 4 times here for comparison. They used 
mordred descriptors in their model but as is convention 
they strictly applied linear modeling methods. All told, 
their model achieved an RMSE of 0.53 averaged across 
all testing data. In only 39  s, of which 31 are spent 
calculating descriptors, fastprop far exceeds the 
reference model with an RMSE of 0.207 ± 0.024. This also 
surpasses Chemprop, itself outperforming the reference 
model with an RMSE of 0.223 ± 0.036.

fastprop fails on QuantumScents
Compiled by Burns and Rogers [40], this dataset con-
tains approximately 3.5k SMILES and 3D structures for 

a collection of molecules labeled with their scents. Each 
molecule can have any number of reported scents from 
a possible 113 different labels, making this benchmark a 
a Quantitative Structure-Odor Relationship. Due to the 
highly sparse nature of the scent labels a unique sampling 
algorithm (Szymanski sampling [41]) was used in the ref-
erence study and the exact splits are replicated here for a 
fair comparison.

In the reference study, Chemprop achieved an AUROC 
of 0.85 with modest hyperparameter optimization and 
an improved AUROC of 0.88 by incorporating the 
atomic descriptors calculated as part of QuantumScents. 
fastprop is incapable of incorporating atomic features, 
so they are not included. Using only the 2D structural 
information, fastprop falls far behind the reference 
study with an AUROC of only 0.651 ± 0.005. Even when 
using the high-quality 3D structures and calculating 
additional descriptors (demonstrated in the GitHub 
repository), the performance does not improve.

The exact reason for this failure is unknown. Possible 
reasons include that the descriptors in mordred are 
simply not correlated with this target, and thus the model 
struggles to make predictions. This is a fundamental 
drawback of this fixed representation method - whereas 
a LR could adapt to this unique target, fastprop fails.

Execution time
fastprop is consistently faster to train than Chemprop 
when using a GPU, helping exploit the ‘time value’ 
of data. Note that due to the large size of the FNN in 
fastprop it can be slower than small Chemprop 
models when training on a CPU since Chemprop uses a 
much smaller FNN and associated components.

There is a clear performance improvement to be 
had by reducing the number of descriptors to a subset 
of only the most important. Future work can address 
this possibility to decrease time requirements for both 
training by reducing network size and inference by 
decreasing the number of descriptors to be calculated 
for new molecules. This has not been done in this study 
for two reasons: (1) to emphasize the capacity of the 
DL framework to effectively perform feature selection 
on its own via the training process, de-emphasizing 
unimportant descriptors; (2) as discussed above, training 
time is small compared to dataset generation time, or 
even compared to to the time it takes to compute the 
descriptors using mordred.

Coverage of descriptors
fastprop is fundamentally limited by the types of 
chemicals which can be uniquely described by the 
mordred package. Domain-specific additions which 
are not just derived from the descriptors already 

5  Although the original Fubrain study reported untransformed fractions, 
the DeepDelta authors confirmed via GitHub that DeepDelta was trained 
on log base-10 transformed fraction values, which is replicated here.

https://github.com/RekerLab/DeepDelta/issues/2#issuecomment-1917936697
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implemented will be required to expand its application 
to new domains. To facilitate this use case fastprop 
allows users to pass pre-computed descriptors from the 
CLI. This allows seamless interoperation with other user-
developed descriptors or other molecular descriptor 
calculators.

For example, in its current state mordred does not 
include any connectivity based-descriptors that reflect 
the presence or absence of stereocenters. While some of 
the 3D descriptors it implements could implicitly reflect 
sterochemistry, more explicit descriptors like the Stereo 
Signature Molecular Descriptor [42] may prove helpful in 
the future if re-implemented in mordred.

Interpretability
Though not discussed here for the sake of length, 
fastprop contains the functionality to perform feature 
importance studies on trained models. By using SHAP 
values [29] once can assign a scalar ‘importance’ to each 
of the input features with respect to the target value, 
such as molecular weight having a significant positive 
impact on boiling point in alkanes. Experts users can 
leverage this information to guide molecular design 
and optimization or inform future lines of inquiry. Via 
the fastprop CLI users can train a model and then 
use fastprop shap to analyze the resulting trained 
network. fastprop shap will then generate diagrams 
to visualize the SHAP values.

Availability

•	 Project name: fastprop
•	 Project home page: github.com/jacksonburns/

fastprop
•	 Operating system(s): Platform independent
•	 Programming language: Python
•	 Other requirements: pyyaml, lightning, 

mordredcommunity, astartes
•	 License: MIT
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