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Abstract 

Toxicity is a critical hurdle in drug development, often causing the late-stage failure of promising compounds. Existing 
computational prediction models often focus on single-organ toxicity. However, avoiding toxicity of an organ, such 
as reducing gastrointestinal side effects, may inadvertently lead to toxicity in another organ, as seen in the real case 
of rofecoxib, which was withdrawn due to increased cardiovascular risks. Thus, simultaneous prediction of multi-organ 
toxicity is a desirable but challenging task. The main challenges are (1) the variability of substructures that contribute 
to toxicity of different organs, (2) insufficient power of molecular representations in diverse perspectives, and (3) 
explainability of prediction results especially in terms of substructures or potential toxicophores. To address these 
challenges with multiple strategies, we developed FATE-Tox, a novel multi-view deep learning framework for multi-
organ toxicity prediction. For variability of substructures, we used three fragmentation methods such as BRICS, Bemis-
Murcko scaffolds, and RDKit Functional Groups to formulate fragment-level graphs so that diverse substructures 
can be used to identify toxicity for different organs. For insufficient power of molecular representations, we used 
molecular representations in both 2D and 3D perspectives. For explainability, our fragment attention transformer 
identifies potential 3D toxicophores using attention coefficients. 

Scientific contribution: Our framework achieved significant improvements in prediction performance, with up to 
3.01% gains over prior baseline methods on toxicity benchmark datasets from MoleculeNet (BBBP, SIDER, ClinTox) 
and TDC (DILI, Skin Reaction, Carcinogens, and hERG), while the multi-task learning approach further enhanced 
performance by up to 1.44% compared to the single-task learning framework that had already surpassed these 
baselines. Additionally, attention visualization aligning with literature contributes to greater transparency in predictive 
modeling. Our approach has the potential to provide scientists and clinicians with a more interpretable and clinically 
meaningful tool to assess systemic toxicity, ultimately supporting safer and more informed drug development 
processes.
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Introduction
Drug development remains hindered by the critical 
challenge of toxicity, which often leads to drug failures 
[1, 2]. Consequently, early and accurate identification 
of potentially harmful compounds is pivotal in drug 
development, which led to development of machine-
learning based predictors of toxicity [3, 4]. Despite 
advances in deep learning-based modeling of 
compounds, existing models predominantly focus on 
predicting toxicity for a single organ [5–8], neglecting the 
systemic nature of chemical toxicity [9].

The human body is an integrated system where organs 
interact through complex biochemical and physiological 
pathways. Several drugs have been withdrawn from the 
market due to unforeseen systemic toxicity, despite 
passing initial organ-specific safety tests. For example, 
Troglitazone was withdrawn due to liver toxicity, but 
is also revealed to be associated with cardiovascular 
risks [10]. Rofecoxib was withdrawn due to increased 
risk of heart attack and stroke, despite initial focus on 
gastrointestinal safety [11].

This interconnectedness underscores the importance 
of simultaneous multi-organ toxicity prediction in drug 
discovery. Single-organ toxicity models fail to account for 
the interconnectedness of organ systems and secondary 
toxic effects, which is essential for understanding 
systemic toxicity [9]. Hence, a comprehensive modeling 
of chemical toxicity across multiple organs is essential 
to mitigate risks and ensure the safety of drugs. While 
graph-based deep learning models have shown promise 
in predicting various toxicity endpoints [5–8], they face 
three significant hurdles when applied to multi-organ 
toxicity prediction.

The first challenge for the whole-molecule scale 
representation is to effectively capture the intricate 
and multi-view characteristics inherent in molecular 
structures. Both 2D topological information and 3D 
spatial arrangements play crucial roles in molecular 
interactions, and integrating these perspectives can 
provide a more comprehensive understanding. While 3D 
conformation is essential for modeling interactions such 
as drug binding, the 2D topology remains fundamental in 
defining key molecular properties, including toxicity [12]. 
Therefore, a multi-view approach that incorporates both 
2D and 3D representations is required for more robust 
molecular modeling.  

Building upon this, the second key challenge is 
identifying diverse subgraphs that contribute to varying 
toxicity endpoints through distinct mechanisms. The 
subgraph scale is critical as it elucidates more about 
organ-specific biochemical pathways and physiological 
mechanisms, such as liver cytochrome P450 enzyme 
activity or kidney tubular transport systems, which 

demands more fine-grained substructure features [13]. 
However, there is no single well-defined substructure 
sufficient to explain all toxic effects. For example, 
the PAINS filter employs multiple criteria to flag 
substructures associated with colloidal aggregation, 
redox activity, covalent reactivity and chelation which 
are all critical contributors to distinct toxicities like 
hepatotoxicity, genotoxicity or immunotoxicity [14]. 
Such variations in toxicophores and its mechanisms 
make it difficult to build generalizable models that 
reliably predict toxicity across different molecules and 
organs.      

Lastly, the explainability of toxicity prediction, 
particularly in identifying contributing substructures 
within the context of 3D molecular space, remains largely 
unexplored in existing works. Recent toxicity prediction 
methods [15–17], are designed to provide explainability 
through structural alerts (SAs), utilizing SHapley 
Additive exPlanations (SHAP) analysis on 2D graph-
based molecular fingerprints.

In order to address these challenges through a holistic 
and interpretable approach for multi-organ toxicity 
prediction, we propose FATE-Tox (Fragment Attention 
Transformer for E(3)-Equivariant Toxicity Prediction), a 
novel framework that integrates structural modeling and 
interpretive capabilities. FATE-Tox uniquely combines 
a transformer-based stage for computing invariant 
features further processed with E(3)-equivariant graph 
neural networks, enabling robust and accurate 3D-aware 
molecular modeling. This multi-view approach captures 
structural and interaction patterns of molecules 
that contribute to systemic toxicity, overcoming the 
first hurdle in multi-organ toxicity. Furthermore, it 
incorporates fragment-level graphs generated through 
three distinct fragmentation methods - BRICS, Bemis-
Murcko scaffolds and RDKit Functional Groups - 
providing a multigranular view of molecular structures 
based on chemical knowledge accounting for metabolic 
and degradation pathways throughout the human 
body. The variation in subgraphs provided to the dual-
branch architecture, which aligns atom- and fragment-
level representations, enhances the model’s ability to 
generalize effectively across diverse toxicity endpoints.      

To our knowledge, FATE-Tox is the first framework to 
achieve a comprehensive prediction of toxicity, utilizing 
3D molecular information. Unlike prior models that 
lack interpretability, our framework offers explainable 
insights into the toxicophores responsible for toxicity 
by incorporating attention visualization. This approach 
provides a level of transparency that is rarely achieved 
in graph-based models, enabling a clearer understanding 
of how specific molecular substructures contribute to 
toxicity.  
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FATE-Tox achieves state-of-the-art results on 
benchmark toxicity datasets and demonstrates robust 
multi-task learning across diverse endpoints, validating 
its effectiveness in addressing the systemic nature 
of chemical toxicity. Comprehensive case studies on 
attention coefficient visualization and embedding space 
analysis highlight our model’s interpretability and the 
effectiveness of its simultaneous multi-organ toxicity 
prediction strategy, especially by leveraging multiple 
fragmentation methods.

Related work
Molecular property prediction
Molecular representation learning (MRL) has gained 
significant attention in recent years due to its potential 
in drug discovery, material science, and other chemical 
applications. The field has seen diverse approaches based 
on the input format of molecular data, from molecular 
fingerprints and 1D SMILES strings to 2D molecular 
graphs and 3D conformers.

2D topological graph-based models. Prior to the 
development of graph-based deep learning modeling, 
quantitative-structure activity/toxicity relationships 
(QSAR/QSTR) approaches were widely explored [18]. 
Speck-Planche et al. [19] introduced multi-target QSAR 
(mtk-QSAR), leveraging Artificial Neural Networks 
and cheminformatics-derived molecular descriptors 
to predict multiple toxicity endpoints [20]. These 
models, also known as Perturbation-Theory Machine 
Learning (PTML), are advanced 2D-QSAR methods that 
integrate chemical and biological information across 
various complexity levels. PTML enables simultaneous 
prediction of multiple endpoints across diverse biological 
targets (e.g., proteins, microbes, cell lines) and assay 
protocols [21].

With the advent of graph-based deep learning 
architectures, development of MRL models have shifted 
towards 2D molecular graphs, which represent atoms 
as nodes and bonds as edges. These models aim to learn 
molecular properties through graph neural networks 
(GNNs) by capturing the topological structure of 
molecules. MolCLR [22] utilizes data augmentation 
at both the node and graph levels and employs a 
contrastive learning strategy. GraphMVP [23] introduces 
a contrastive learning framework between 2D topology 
and 3D molecular geometry, aiming to bridge these two 
representations for better alignment. With the emergence 
of Transformers [24] and their applications in graph data, 
Molecular Attention Transformer [25, 26] attempts to 
alter the attention mechanism suited to comprehend 
molecular graphs.

3D conformer-based models. To further enhance 
molecular understanding, recent models [27, 28] have 

extended to incorporate 3D conformers, capturing the 
spatial arrangement of atoms. However, ensuring that 
models account for transformations in 3D space, such 
as rotations and translations, is crucial to maintain 
consistent and reliable predictions. For this reason, 
the E(3) equivariance is often necessary in molecule 
property prediction tasks. It guarantees that the model’s 
output remains invariant when the input undergoes 
these transformations, which is vital for learning physical 
properties that are inherently symmetrical. A variety 
of E(3)-equivariant models have been developed for 
supervised learning tasks [29–32] involving energy and 
force predictions.

By leveraging various molecular representations-1D, 
2D, and 3D-combined with the development of E(3)-
equivariant architectures, modern MRL frameworks 
are well-equipped to tackle a range of challenges in the 
molecular domain.

Organ‑specific toxicity prediction models
The computational modeling of toxicity has evolved to 
address the challenges of efficiently assessing chemical 
hazards. Traditionally, most toxicity prediction models 
have been developed to focus on specific endpoints, 
such as hepatotoxicity [8], cardiotoxicity [5, 33], or 
carcinogenicity [6]. These endpoint-specific models [7] 
are tailored to particular biological mechanisms and 
datasets, allowing them to achieve high accuracy within 
narrow domains. Several models have been proposed 
to further provide interpretability regarding the toxicity 
of compounds. CardioDPi [15] and RespirationDPi [16] 
are explainable deep learning models for predicting 
cardiotoxicity and respiratory toxicity, respectively, along 
with explainability using Structure Alerts (SA) and SHAP 
analysis. Furthermore, BCDPi [17] adopted a multi-task 
learning framework to predict environmental toxicity 
based on chemical bioconcentration in fish, along with 
interpretability of substructures using SHAP analysis 
based on the Klekota-Roth fingerprint (KRFP).

However, their specialized nature limits their 
generalizability, making it difficult to predict 
comprehensive toxicity profiles that span multiple 
biological systems.

In contrast, attempts at comprehensive toxicity pre-
diction have traditionally relied on simplified molecular 
representations such as fingerprints-binary or numerical 
vectors encoding the presence or absence of predefined 
substructures [34–37]. These fingerprints, when com-
bined with machine learning models like Random For-
ests or Support Vector Machines, offer a straightforward 
approach to assessing multiple toxicity endpoints simul-
taneously. While efficient, this approach suffers from lim-
ited expressiveness, as fingerprints often fail to capture 
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subtle structural and stereochemical features critical for 
accurate predictions. Consequently, such models may 
struggle to distinguish between structurally similar com-
pounds or enantiomers with differing toxicity profiles.

Emerging approaches integrating advanced molecular 
representations, including graph-based [38, 39] and 
3D-aware methods [40], seek to address these limitations.

These newer methods hold promise for achieving 
comprehensive toxicity prediction with greater accuracy 
and interpretability.

Methods
Datasets
In order to demonstrate the utility of our model on pre-
diction of toxicity, we conducted experiments on a wide 
range of toxicity-related datasets sourced from Molecu-
leNet [41] and the Therapeutics Data Commons (TDC) 
[2], two well-established benchmarks in drug discovery 
and toxicity prediction. These datasets provide a robust 
foundation for toxicity prediction, encompassing spe-
cific organ toxicities (e.g., hepatotoxicity and neurotoxic-
ity) as well as broader systemic toxicity endpoints (side 
effects and approval/withdrawal labels). Consistent with 
methodologies in previous studies, the Moleculenet 
datasets are divided using scaffold splitting, where test 
set contains unseen Murko scaffolds, in order to evalu-
ate the generalizability of the models. For TDC datasets, 
we follow the scaffold-splitted subsets given in the data-
sets. The detailed statistics and sources of the benchmark 
datasets are summarized in Table 1.

FATE‑Tox: fragment attention transformer 
with E(3)‑equivariance
Fragmentation methods
Fragmentation methods dissect complex molecule 
structures into smaller fragments, offering insights into 
critical structural features or interactive sites (Fig.  1). 
Reflecting its importance in medicinal chemistry and 
chemical informatics, various fragmentation methods 
have been proposed - differing on disruption criteria 
(e.g., cyclic structures, double bonds) or predetermined 
fragment libraries [42]. Diverse fragmentation methods 
that capture distinct chemical aspects within a molecule 
can provide valuable insights for comprehensive toxic-
ity prediction, especially considering that molecules may 
exist in various forms within the body due to different 
pH environments and metabolic processes. We employ 
three different fragmentation methods: BRICS, Bemis-
Murcko scaffolds, RDKit functional group. The combi-
nation of these approaches enables a more exhaustive 
understanding of structure-activity relationships in toxic-
ity prediction.

•	 BRICS (Breaking of Retrosynthetically Interesting 
Chemical Substructures). BRICS is a fragmentation 
method specifically designed to mimic retrosynthetic 
analysis [43], focusing on bonds that are commonly 
formed or broken in synthetic chemistry. BRICS 
employs 16 cleavage rules that consider the chemical 
environment of each bond and its surrounding 
substructures. This approach ensures that the 

Table 1  Benchmark toxicity datasets, their statistics and origins

“Recovered” represents the count of molecules successfully embedded as both graph structures and 3D conformers

Task BBBP SIDER ClinTox DILI Skin Rxn Carcinogens hERG

Binary classification

Origin Moleculenet TDC

Num. of tasks 1 27 2 1 1 1 1

Recovered 2039 (99.85%) 1427 (97.20%) 1478 (99.85%) 475 (100%) 403 (100%) 276 (100%) 643 (99.23%)

Train/val/test 1628/204/204 1109/139/139 1167/146/146 332/47/96 281/40/82 193/28/55 453/65/132

Fig. 1  Visualization of Fragmentation Methods. Pramipexole, a dopamine agonist used to treat the symptoms of Parkinson disease, fragmentized 
based on the three fragmentation methods, BRICS, Murcko and Functional Group (RDKit). BRICS fragment pramipexole into smaller substructures 
whereas Murcko decomposes it to its core scaffold, retaining the fused bicyclic aromatic system and the thiazole ring. Functional Group-based 
fragmentation generates a large backbone structure, primarily focusing on the primary amine
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resulting fragments are both chemically meaningful 
and synthetically accessible [42].

•	 Bemis-Murcko scaffolds. Fragmentation based on 
Bemis-Murcko scaffolds identifies core structures 
and additional side chains. Fragmentation based 
on such scaffolds preserves the largest ring system 
within the molecule and highlights peripheral side 
chains. Such approach can be valuable for identifying 
common structural motifs across a series of 
compounds [44].

•	 Functional Groups (RDKit). The functional group 
fragmentation method utilizes predefined SMARTS 
patterns to identify common functional groups 
within molecules. We refer to the 33 functional 
groups defined by RDKit [45] following previous 
works [46]. The isolation of chemically intuitive and 
well-defined substructures, allows the observation 
of key molecular substructure’s contribution to a 
molecule’s overall properties and biological activity.

Fragment graph construction
In our representation, we model the molecule as graph 
G = (V ,X ,Abond) where V = {1, ...,N } is the set of atoms 
in the molecule, and X = {(hi, c

2D
i , c3Di )}Ni=1 denotes 

the node attributes. Each atom i ∈ V  is associated with 
a feature vector hi ∈ R

nf  , 2D coordinates c2Di ∈ R
2 , and 

3D coordinates c3Di ∈ R
3 . Here, nf is the dimensionality 

of the atom-level feature vector, encoding chemical 
properties of each atom (detailed in Appendix). The 

bond adjacency matrix Abond ∈ {0, 1}N×N represents the 
molecular bonds, where abondij = 1 if atoms i and j are 
bonded regardless of the bond type, and 0 otherwise.

To represent fragment-level features, we partition the 
molecule into substructures as defined in "Fragmentation 
methods" section, where each fragment k is defined by 
a set of atoms Fk ⊂ {1, ...,N } . For each fragment k, we 
define its coordinates cfragk  and feature vector hfragk  as 
follows. In these definitions, Fk denotes the set of atoms 
in the k-th fragment, providing a straightforward method 
to aggregate atom-level features into fragment-level 
representations.

The fragment coordinates cfragk  are calculated as the 
center of mass, using weighted average of atom 3D 
coordinates within fragment k as following:
c
frag
k =

∑

i∈Fk
mic

atom
i

∑

i∈Fk
mi

. The feature vector hfragk  is obtained 

by applying sum-pooling to the node features of all atoms 
within fragment k:
h
frag
k =

∑

i∈Fk
hatomi .

Model architecture
FATE-Tox adopts a dual-branch architecture, composed 
of an atom-level branch and a fragment-level branch, to 
comprehensively capture molecular structures at differ-
ent levels of granularity (Fig.  2). The atom-level branch 
focuses on capturing fine-grained interactions between 
individual atoms and their direct bonds, while the frag-
ment-level branch guides the model to comprehend 
molecular structure in larger substructures, potentially 

Fig. 2  Model Architecture of FATE-Tox. The model is roughly composed of two branches: Atom-level and Fragment-level. Each branch passes 
down the input features and coordinates into a two-component pipeline composed of Molecular transformer module and the E(3)-Equivariant 
Graph Convolutional Layer. After the atom-level and aggregated fragment-level representations are generated, they are concatentated with ECFP, 
then passed down to the prediction MLP to yield the prediction for the toxicity label
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understanding the concept of toxicophores. Both the 
atom and fragment branch is composed of a transformer 
module to compress 2D graph features prior to initiating 
message passing that incorporates 3D spatial informa-
tion. The two only differ in terms of the input graph as 
defined in "Fragment graph construction" section.

Molecular transformer module
The transformer module leverages a multi-head self-
attention mechanism designed to integrate molecular 
structural information effectively. This step aims to 
capture dependencies between atoms in the molecular 
graph, so that 2D representations with contextual 
information on the linkage of atom nodes, are refined 
and contextually enriched. Sufficient information 
extraction through this phase prepares molecules for 
subsequent message-passing operations that incorporate 
3D coordinates for comprehensive molecular feature 
understanding.

Following the previous work [25], we integrate 
multi-head attention with graph structure and spatial 
information by incorporating adjacency and distance 
matrices to capture both local and global relationships 
within molecular structures. Given an input node feature 
matrix H ∈ R

B×N×nf  , where B is the batch size, N is the 
number of atoms in the molecule/fragment and nf is the 
node feature dimension, we project H to obtain query Q, 
key K, and value V matrices with learnable weights.

Given nhead number of heads, the attention score 
matrix Pattn is computed by taking the dot product 
between the query Q and key K, normalized by the square 
root of key dimension dk (where dk =

nf
nhead

 ) for each head 
through following formula:

for all pairs of atom i and j within a molecule.
To enhance structural understanding, the self-

attention matrix is augmented with summation of bond 
adjacency matrix Abond ∈ R

B×N×N and distance matrix 
D ∈ R

B×N×N . In the molecular transformer module, 
the pairwise 2D distance d2Dij  between node i and j is 
computed using their 2D coordinates ( c2Di , c2Dj  ) via 
the RDKit Python package [45]. The bond adjacency 
matrix is normalized by the sum of its elements 
along each row to ensure proper weighting, and the 
distance matrix is transformed using softmax function 
( D′

ij = softmax(−Dij) ) before being incorporated into the 
self-attention matrix. The final attention weights Pweighted 
are obtained by combing Pattn , the transformed distance 
matrix D′ and the adjacency matrix Abond . All Pweighted 

(1)Pattn = softmax

(

QiK
⊺

j
√

dk

)

of each head is concatenated to be processed for the 
following linear transformation.

E(3)‑equivariant graph convolutional layer
Following the initial processing of the molecular graph 
via the transformer module, each node vi is represented 
by an updated feature embedding that integrates 
attention-weighted information from its neighbors. The 
updated node feature htransi  , which integrates attention-
weighted information from its neighbors, is then input 
into the EGNN along with the corresponding 3D 
spatial coordinates c3Di ∈ R

3 . The 3D coordinates c3Di  
are obtained via MMFF optimization using RDKit. To 
integrate spatial structure in 3D space, each equivariant 
graph convolutional layer (EGCL) refines the molecular 
features while maintaining E(3)-equivariance.

The initial layer of the EGCL first inputs the relative 
squared distance between two coordinates ||c3Di − c3Dj ||2 
along with node embeddings htransi , htransj  , and edge 
attributes aknnij  . The edge attribute is derived from 
a k-nearest neighbor graph adjacency matrix Aknn 
computed using Euclidean distance between atoms based 
on the initial atom coordinates. Message m1 is aggregated 
from all neighboring nodes j for node i and is used 
in combination with the previous layer embedding to 
update the node feature h1 . φe , φh are learned functions 
representing edge and node update mechanisms, 
respectively.

Additionally, in each layer the coordinate of node i is 
updated by summing weighted directional vectors from 
neighboring nodes, scaled by message mij . The scaling 
constant c controls the magnitude of positional updates. 
By applying equivariant transformations, the model 
maintains rotation and translation invariance.

The EGCL is applied iteratively across multiple layers, 
with each successive layer refining both the feature 
embeddings hl and spatial coordinates cl while preserving 
E(3)-equivariance: hl+1, cl+1 = EGCL(hl , cl ,Aknn).

(2)
Pweighted = �attn · Pattn + �dist · D

′ + �adj · A
bond,

where �attn + �dist + �adj = 1

(3)m1
ij =φe

(

htransi , htransj , ||c3Di − c3Dj ||2, aknnij

)

(4)m1
i =

∑

j �=i

m1
ij , h1i = φh(h

trans
i ,m1

i )

(5)c1 = c3Di +
∑

j �=i

(

c3Di − c3Dj

)

φx

(

m1
ij

)
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For each branch, the corresponding initial node feature, 
adjacency matrix, distance matrix and 3D coordinate 
matrix are processed through the attention and equiv-
ariant graph neural network. The fragment-level graphs 
generated from BRICS decomposition, Murcko scaffold-
ing, and functional group-based fragmentation are pro-
cessed through an identical fragment-branch module. 
The representations produced by these graphs are com-
bined using a weighted summation, expressed as:

where �b, �m, �f  are adjustable hyperparameters satisfying 
�b + �m + �f = 1 . The final representations from the 
atom-level branch Hfinal

atom and fragment-level branch Hfinal
frag  

are concatenated along with Extended-Connectivity 
Fingerprints (ECFP). This concatenated feature vector is 
used as input for the prediction layer to produce toxicity 
scores:

The model is trained using binary cross entropy loss 
between the predicted and target labels for classification 
tasks and MSE loss for regression tasks. Model 
parameters are updated using the gradient descent-based 
Adam optimizer, implemented through PyTorch python 
library.

Analysis on E(3)‑equivariance
When modeling 3D molecule structures with machine 
learning, predictions about molecular properties 
should remain invariant under E(3) transformations 
(translations, rotations, and reflections) of the molecule’s 
3D coordinates. This invariance in the final predictions is 
crucial for ensuring consistent and physically meaningful 
results. Equivariant model design enables internal 
representations to transform predictably under E(3) 
operations, maintaining the integrity of spatial features as 
the input molecule changes orientation or position. The 
combination of equivariant internal representations and 
invariant final predictions enables the model to generalize 
well and produce physically consistent (invariant) results 
across different molecular orientations and positions. To 
verify that our model maintains E(3)-equivariance, we 
dissect the sequential stages of processing, starting from 
the 2D feature graph through the transformer module to 
the 3D graph in the EGNN.

Initially, the transformer module processes node 
features based solely on atom and bond features in 
a 2D graph. Let A be the adjacency matrix and D be 
the distance matrix representing the connectivity of 

(6)
H

final
frag = �b ·H

Murcko
frag + �m ·HBRICS

frag + �f ·H
RDKit
frag

(7)
Prediction = Linear

(

Concat(Hfinal
atom,H

final
frag , ECFP)

)

.

the molecule in the graph. The transformer generates 
updated embeddings for each node through a self-
attention mechanism. Specifically, each updated node 
embedding h′i is computed as:

This step is inherently E(3)-invariant, as it does not 
incorporate 3D coordinate data. Consequently, the 
transformer module itself does not influence the model’s 
E(3)-equivariance, as it remains “blind” to spatial 
transformations.

As proven in the original paper [32], EGNN leverages 
pairwise distances between nodes to ensure that the 
output remains equivariant under E(3) transformations. 
As distances between points do not change under 
translations or rotations, it is invariant to E(3) 
transformations. The EGNN additionally updates each 
node’s embedding by aggregating information from 
neighboring nodes based on these distances, ensuring 
that spatial relationships are encoded in an equivariant 
manner. The updated node embedding h

EGNN
i  is 

computed as:

where N (i) represents the set of neighbors of node i.
By incorporating 3D coordinates only in this EGNN 

phase, our model, FATE-Tox, ensures that predictions 
remain E(3)-equivariant, allowing for robust and 
consistent analysis of molecular toxicity properties under 
various spatial transformations.

Gradient surgery for multi‑task learning of toxicity
Multi-task learning (MTL) is a powerful paradigm for 
jointly learning multiple related tasks, enabling improved 
generalization through shared representations. In chem-
informatics, MTL holds great promise, particularly for 
modeling various toxicity endpoints such as blood-brain 
barrier permeability (BBBP), drug-induced liver injury 
(DILI), skin reactions, carcinogenicity, and hERG channel 
inhibition. However, MTL presents unique challenges in 
this domain. A key issue arises from conflicting gradients 
during training. The diverse nature of toxicity endpoints 
often leads to optimization conflicts, where gradients for 
one task may oppose or dominate those for another. This 
issue is exacerbated in sharp optimization landscapes, 
where gradients with different magnitudes hinder con-
vergence, causing certain tasks to dominate the optimi-
zation process. Such conflicts negatively affect model 
performance across tasks, as the optimization directions 
are misaligned, reducing the overall benefit of shared 
learning.

h
′
i = Transformer(hi,A,D).

h
EGNN
i = EGNN

(

h
′
i, {d

3D
ij }j∈N (i)

)

,
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PCGrad (Projecting Conflicting Gradients), is a 
novel approach designed to mitigate gradient conflicts 
in MTL [47]. The method identifies and resolves 
conflicting components within task gradients after 
examining pairwise relationships between tasks during 
backpropagation. Specifically, when a conflict is detected, 
PCGrad modifies the gradient of one task by projecting it 
orthogonally to the conflicting gradient.

In our work, gradient modification using PCGrad 
was integrated with the Adam optimizer at the end of 
each training step, as follows: During each step, initial 
gradients are computed individually for each task, such 
as BBBP, DILI, and others. Pairwise dot products are then 
computed between gradients of all tasks in a random 
order. For gradient pairs exhibiting conflicts (negative 
dot products), the PCGrad algorithm projects each task’s 
gradient onto the normal plane of the gradient of the 
conflicting task. The modified gradients are subsequently 
aggregated across tasks to update the model parameters, 
ensuring a balanced optimization trajectory that benefits 
all tasks. This approach reduces destructive interference 
between task gradients, allowing our model to fully 
leverage the enriched embedding space discussed in 
"Ablation studies" section  for improved performance 
across all toxicity prediction tasks.

Results
Experimental setup
Given the current lack of comprehensive toxicity 
prediction models that assess multiple toxicity endpoints 
simultaneously, we benchmarked a range of state-of-the-
art pretrained molecular property prediction models, 
pretrained on large molecular datasets (e.g. ZINC20 

[48]) including MolCLR [22], GraphMVP [23], MAT [25], 
MolFormer, and Uni-Mol [28]. In addition, we compared 
traditional machine learning approaches, including 
Random Forest (RF) [49], Support Vector Machine 
(SVM) [50], and Multilayer Perceptron (MLP) [51] 
for robust comparative analysis. Each of these models 
leverages different molecular representations as input, 
such as 2D fingerprints, 2D graphs, or 3D conformers.

We assessed model performance using the Area Under 
the Receiver Operating Characteristic Curve (AUROC) 
for each dataset, repeating the assessment three times 
with different seeds. For multi-task datasets-ClinTox 
(2 tasks) and SIDER (27 tasks)- we reported the mean 
AUROC averaged across all tasks. We extended our 
evaluation beyond single-task learning (STL) to include 
a multi-task learning (MTL) setup. We combined organ 
related single-tasked toxicity datasets by merging the 
training, validation, and test sets across individual 
datasets to perform a unified multi-task learning 
experiment.

Comparison of prediction performance on seven toxicity 
datasets

Table  2 shows the experiment results of FATE-Tox 
and baselines under three random seeds with the 
best results are marked in bold. All baselines models 
were reproduced under the identical dataset splitting. 
We summarize the results as following: (1) FATE-
Tox outperforms baselines on all toxicity datasets. (2) 
FATE-Tox is significantly better than baselines in BBBP 
and Carcinogens prediction tasks, with interpretable 
results to be discussed in "Case studies on BBBP and 

Table 2  Toxicity prediction performances on seven toxicity benchmark datasets

The performances are measured in AUROC % (higher is better ↑ ). The mean and standard deviation of three trials for each model are provided. Additionally, we 
evaluate the results in a multi-task learning setting for organ-specific toxicity datasets, excluding datasets that are primarily provided as multi-task (e.g., SIDER, 
ClinTox). Best performances are marked in bold and second-best are underlined

BBBP DILI Skin Rxn Carcinogens SIDER ClinTox

Single-task learning

 RF 67.75 (1.04) 88.29 (1.98) 67.71 (2.07) 75.10 (3.15) – –

 SVM 68.65 (0.00) 89.70 (0.00) 73.12 (0.02) 78.27 (0.12) – –

 MLP 63.81 (0.55) 87.68 (0.50) 49.93 (13.81) 78.27 (0.24) 62.50 (1.11) 71.95 (1.88)

 MolCLR 65.09(0.94) 81.45 (0.77) 45.05 (6.17) 74.00 (3.78) 59.87 (2.89) 82.96 (4.24)

 GraphMVP 64.24 (1.27) 89.65 (0.19) 61.32 (3.50) 79.51 (4.72) 61.32 (0.71) 71.38 (1.49)

 MAT 69.08 (4.68) 89.77 (0.99) 65.92 (1.13) 82.99 (3.47) 62.69 (1.54) 91.09 (0.41)

 Molformer 68.60 (4.64) 88.98 (0.07) 64.28 (1.63) 73.04 (0.21) 51.41 (0.97) 71.72 (4.63)

 Uni-Mol 68.76 (2.04) 88.20 (1.69) 69.48 (4.76) 82.20 (3.47) 60.23 (0.91) 91.11 (3.61)

 FATE-ToxSTL 70.15 (1.44) 90.53 (0.52) 73.33 (0.61) 84.16 (2.09) 63.29 (0.71) 91.37 (1.53)
Multi-task learning

 FATE-ToxMTL 71.16 (1.84) 91.86 (0.59) 74.10 (0.84) 84.78 (0.32) – –



Page 9 of 16Ha et al. Journal of Cheminformatics           (2025) 17:74 	

carcinogen compounds" section. (3) FATE-Tox enhances 
performance through a multi-task learning (MTL) setup, 
effectively augmenting complementary information 
that the model can naturally distinguish. The MTL 
setting allows the model to better capture task inter-
dependencies, especially when processing fragmented 
datasets, and improves its ability to recognize relevant 
features across diverse toxicity endpoints.

Notably, during our comparative analysis, we observed 
that baseline models incorporating 3D conformer 
structural information via inter-atom distance 
(MAT [25], Uni-Mol [28]) showed high capacity in 
toxicity prediction. We believe their capability to 
capture stereochemical information helps explain its 
performance in the dataset that reflects real-world 
scenarios where the 3D spatial orientation of molecules 
are essential. Particularly, MAT effectively captured 
complex molecular interactions by leveraging self-
attention mechanisms in majority of the datasets by 
capturing both local and global molecular features. In 
contrast, molecular fingerprint applied to traditional 
machine learning models, such as Support Vector 
Machines (SVM), which are less prone to overfitting 
compared to some deep learning architectures, provided 
stable and reliable predictions for the skin reaction 
tasks, indicating that key predictive features are well-
represented by conventional molecular descriptors.

Contribution of different fragmentation methods to FATE‑Tox
The varying importance of different fragmentation meth-
ods across toxicity datasets in Table 3 reflects the com-
plex nature of toxicological mechanisms and the diverse 
chemical properties relevant to each endpoint. Each frag-
mentation method captures different molecular charac-
teristics that influence their relevance to specific toxicity 
endpoints, as detailed below.

BRICS fragmentation produces large molecular frag-
ments by considering the chemical context of each 
bond, preserving key physicochemical properties 
such as molecular weight, lipophilicity, and topologi-
cal polar surface area (TPSA) [42]. These features are 
critical for endpoints like blood-brain barrier perme-
ability (BBBP), for which global molecular charac-
teristics, such as molecular weight, lipophilicity, and 
topological polar surface area (TPSA), matter more 
than localized sites [52]. For example, CNS-active 
drugs like diazepam and fluoxetine share fused-ring 
systems and halogenated aromatic groups, features 
well-retained by BRICS but potentially lost in finer 
scale fragmentations.

Functional group-based fragmentation (e.g., 
RDKit) targets specific reactive centers and 
toxicophores,including nitro groups, quinones, and 

Michael acceptors,associated with endpoints such as 
carcinogenicity and hepatotoxicity [1, 53–55]. These 
groups are well-known triggers of DNA or protein 
damage via electrophilic attack or oxidative stress. 
Compounds like acrylamide and nitrofurantoin 
exemplify how RDKit’s ability to extract these moieties 
makes it especially effective for modeling reactivity-
driven toxicity.

Bemis-Murcko scaffolds focus on the core molecular 
framework, which is especially useful for endpoints 
related to structural class effects, such as skin toxicity. 
Their high importance in SIDER and skin reaction 
datasets suggests that certain scaffold types, for instance 
the benzene sulfonamide core in sulfamethoxazole, are 
predictive of dermatological adverse events, including 
severe conditions like Stevens-Johnson syndrome [56, 
57].

Overall, the differences in highly weighted fragmen-
tation methods across datasets likely reflect the distinct 
chemical properties and toxicological mechanisms rele-
vant to each dataset. The differing granularity and spec-
ificity each method offers in identifying toxicophoric 
features highlights the value of combining multiple 
fragmentation methods for comprehensive toxicity 
prediction. This is also evidenced in Table 4, where the 
integration of all fragmentation methods outperforms 
individual methods for most datasets. Such multi-frag-
mentation integration enables the model to innately 
capture inter-dataset differences, allowing it to effec-
tively handle multi-task settings across various organs 
with distinct chemical characteristics and toxicology 
profiles. Consequently, the model benefits from aug-
mented data (combined datasets), yielding improved 
predictive outcomes even in multi-task setting.

Table 3  Fragmentation weights on seven toxicity benchmark 
datasets

Each weight represents the contribution of a specific fragmentation method 
used to achieve the results presented in Table 2. Highest values per dataset are 
marked in bold

BRICS Bemis-Murcko 
Scaffolds

Functional 
groups 
(RDKit)

BBBP 0.4 0.3 0.3

SIDER 0.3 0.5 0.2

ClinTox 0.25 0.25 0.5
DILI 0.3 0.2 0.4
Carcinogens 0.4 0.2 0.4
Skin reaction 0.25 0.5 0.25

hERG 0.4 0.2 0.4
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Ablation studies
Validation of the FATE‑Tox module: performance analysis
Table  4 provides a comprehensive analysis that 
underscores the efficacy of our integrated approach 
in predicting various toxicity endpoints. The results 
clearly demonstrate that removing either fragment-
based or atom-level features leads to a noticeable 
decrease in performance, which highlights the necessity 
of incorporating both types of features to leverage their 
complementary strengths. Moreover, the dual-branch 
architecture of our model significantly outperforms 
single-level graph approaches. While incorporating all 
three fragmentation methods scored highest in most 
datasets, tasks benefited with even the single use of 
fragmentation methods. Notably, methods that yielded 
the biggest increase differed across datasets.

A critical aspect of our model’s architecture is the 
inclusion of a molecule transformer prior to EGCLs. 
While the 3D conformers embedded by EGCLs are cru-
cial, the molecule transformer’s capability to aggregate 
and integrate inter-node information proved to be essen-
tial across all datasets. Furthermore, to test the general-
izability and the contribution of each component of the 
model, we evaluated the MoleculeNet-trained model on 
an external test set [58], which further demonstrated the 
robust performance of our framework and also the con-
tributions of each component (Supplementary Table  3). 
These findings not only validate the architecture design 
choices, but also emphasize the importance of integrat-
ing multiple molecular representations and sophisticated 
data aggregation methods for achieving superior predic-
tive performance.

FATE‑Tox embedding space: multi‑task learning
In a multi-task learning setting, the learned embed-
dings are shared across all tasks, capturing representa-
tions that balance both task-specific and task-agnostic 

features. This space is enriched by cross-task knowledge 
transfer, enabling it to capture broader and potentially 
more robust patterns in the data. To evaluate the quality 
of these embeddings, we performed a clustering-based 
analysis by applying binary k-means clustering and com-
puting silhouette scores for the resulting cluster labels. 
This analysis focuses on the intrinsic structure of the 
shared MTL embedding space and its ability to produce 
distinct and meaningful clusters for a given task.

We compared the concatenated embedding from 
the final layer of each atom and fragment branch in 
the corresponding STL/MTL setting. The results, 
summarized in Fig.  3, show that MTL embeddings 
consistently achieved higher silhouette scores across 
most datasets. This indicates that the shared MTL feature 
space not only capture patterns that generalize across 
toxicity tasks but also produces embeddings that are 
inherently better at distinguishing between task-specific 
categories. The effect is also visually illustrated for the 
test dataset of each toxicity, comparing the embedding 
spaces learned in STL and MTL setting. The embeddings 
are projected into a two-dimensional space using t-SNE 
visualization, and the colors represent ground truth 
labels. The MTL embeddings generally exhibit more well-
separated clusters, aligning with the higher silhouette 
scores reported.

This analysis underscores the strength of the MTL 
approach, not only for task performance but also for gen-
erating embeddings with higher intrinsic quality. These 
findings align with the hypothesis that shared representa-
tions in MTL facilitate richer feature learning by leverag-
ing synergies across tasks.

FATE‑Tox embedding space: multi‑view approach
In our study, we further demonstrate the effectiveness 
of our multi-view approach by visualizing the embed-
ding spaces of ( R)-thalidomide and ( S)-thalidomide. The 
two molecules are enantiomers, which are mirror images 
of each other. Enantiomers have the same molecular 

Table 4  Ablation studies

The performances are measured in AUROC %. Each entry shows the mean and standard deviation over three trials for each experimental setting. Best performances 
are marked in bold and second-best are underlined

BBBP SIDER ClinTox DILI Skin Rxn Carcinogens hERG

-fragment 67.95 (2.74) 56.82 (2.17) 90.09 (0.80) 83.86 (10.34) 70.29 (2.63) 76.31 (1.86) 82.55 (1.52)

-atom 65.94 (1.47) 57.8 (5.49) 81.61 (5.84) 78.06 (0.88) 69.18 (1.69) 80.10 (1.56) 77.41 (1.90)

+BRICS 67.00 (0.26) 61.79 (0.63) 89.26 (0.50) 88.68 (2.71) 68.09 (1.16) 77.89 (0.83) 79.73 (1.93)

+Murcko-Bemis 68.44 (2.19) 61.04 (1.26) 89.65 (2.05) 86.70 (1.04) 68.75 (4.87) 80.44 (3.71) 82.82 (1.88)

+Functional Group 67.35 (1.57) 62.41 (0.78) 89.12 (0.77) 86.70 (1.04) 71.61 (3.27) 86.64 (1.58) 81.58 (1.74)

-molecule transformer 68.00 (0.58) 60.32 (3.79) 86.68 (1.40) 84.25 (6.07) 68.33(4.33) 80.24 (1.19) 82.31 (0.35)

FATE-ToxSTL 70.15 (1.44) 63.29 (0.71) 91.37 (1.53) 90.53 (0.52) 73.33 (0.61) 84.16 (2.09) 84.30 (0.31)
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formula and the same connectivity between atoms but 
differ in the spatial arrangement around a chiral center. 
Hence the distinction between ( R )- and ( S)-thalidomide 
becomes apparent only in 3D representations as pre-
sented in Fig.  4. Nonetheless, such spatial differences 
exhibit profound biological differences, with ( R)-thalido-
mide being non-teratogenic and ( S)-thalidomide known 
for its high teratogenicity [59, 60]. This distinction high-
lights the limitations of using only 2D molecular repre-
sentations in toxicity prediction, as key stereochemical 
differences are often lost, and may lead to inaccurate risk 
assessments.

To showcase such properties, we visualized the embed-
ding spaces of two methods: 2D embeddings of MAT, 
and 3D incorporated embeddings from FATE-Tox, with 
t-SNE dimensionality reduction (Fig.  5). The embed-
dings were retrieved by the pretrained models of each 
for the SIDER dataset. By plotting the test dataset of 
SIDER, R/S isomers were not distinguishable under 

MAT embeddings. In contrast, our multi-view embed-
dings with 3D conformer incorporation, separated these 
isomers, capturing stereoisomer-specific toxicity risks. 
Nonetheless, 2D embeddings may focus on planar or top-
ological molecular properties, providing complementary 
geometric information. This validates that multi-view 
representations significantly improve the model’s capac-
ity to identify and differentiate between subtle but con-
sequential molecular differences in chemical compounds.

Case studies on BBBP and carcinogen compounds
To illustrate the interpretability of the proposed FATE-
Tox, we conducted an in-depth analysis on the Blood-
Brain Barrier (BBB) penetration and carcinogens dataset 
by visualizing multi-head averaged attention coefficients. 
Specifically, attention scores from the final layer of 
the molecule transformer were employed to identify 
substructures important for toxicity prediction. Atoms 
with higher attention coefficients were illustrated with 

Fig. 3  Comparison of test embedding spaces along with its silhouette scores generated by single-task learning (STL) and multi-task learning (MTL) 
models across the five datasets. The embeddings are projected using t-SNE and labeled based on ground truth labels (non-toxic: red / toxic: blue). 
Higher scores for MTL indicate superior separability and cohesion in the shared embedding space, illustrated in the learnt embedding spaces 
visualized using t-SNE

Fig. 4  3D conformer of (R)/(S)-Thalidomide
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deeper intensities of red. For edges that link atoms of 
high coefficients than the average coefficient within the 
molecule, the edges were colored gray. Furthermore, 
we have compared the interpretability of our attention 
coefficients with existing eXplainable AI (XAI) 
frameworks including SHapley Additive exPlanations 
(SHAP) [61] and Grad-CAM [62] analyses, detailed in 
Supplementary Table 2.

Blood brain barrier penetration of anti‑histamines 
and beta‑blockers
Diphenhydramine and propranolol are widely known 
for their capabilities of penetrating the BBB, resulting in 
adverse effects on the central nervous system. Comple-
menting their inconveniencies, cetirizine and atenolol has 
been developed to minimize the penetration of BBB and 
thus minimize CNS side-effects [63–65]. Table  5 shows 
that for both anti-histamines and beta-blockers, the 
attention visualizations highlighted key distinct substruc-
tures that significantly contributed to the overall polarity 
of the compounds. Among molecules of high structural 
similarity (same drug class), FATE-Tox effectively cap-
tured characteristic substructures contributing to lower 
blood-brain barrier permeability within the atom-level 
graph. We provide the molecular mechanisms based on 
differing structures of the molecules, contributing to the 
difference in ability to cross the blood-brain barrier. This 
reduction is associated with decreased central nervous 
system side effects, such as sedation, drowsiness, fatigue 

observed in cetirizine and atenolol compared to diphen-
hydramine and propranolol.

Specifically, diphenhydramine consists of a tertiary 
amine attached to two hydrophobic benzene rings. The 
absence of polar functional groups makes diphenhy-
dramine highly lipophilic (LogP 3.3−3.6), allowing it 
to dissolve in the lipid bilayer of the BBB and pass via 
passive diffusion [66, 67]. On the other hand, cetirizine 
has a carboxyl group and a chloride substituent, mak-
ing it significantly more polar than diphenhydramine 
(logP 0.3−0.6). This leads to minimal passive diffu-
sion across the BBB. Additionally, the carboxyl group 
is deprotonated in our body of pH 7.4, making ceti-
rizine negatively charged to further prevent BBB pas-
sage. Likewise, propranolol is highly lipophilic (LogP 
3.0−3.5) driven by a naphthalene (benzene-based) 
ring. Atenolol contains a hydrophilic amide group, sig-
nificantly reducing lipophilicity (LogP 0.16). FATE-Tox 
successfully captures all the mentioned key substruc-
tures leading to difference in polarity and BBB penetra-
tion, demonstrating FATE-Tox’s capability to pinpoint 
regions relevant to specific pharmacokinetic properties.

The dual-branch architecture of FATE-Tox, which 
integrates atom-level and BRICS-fragmented graphs, 
proved instrumental in achieving accurate predictions. 
The high weighting of the BRICS fragmentation for the 
BBBP dataset graph (Table  3), resulted in atom-level 
attention coefficients appearing in a fragmented pattern 
corresponding to these substructures. This highlighted 

Fig. 5  t-SNE visualization of (R/S)-Thalidomide embeddings. (Left) MAT (2D-only), (Right) FATE-Tox (2D+3D) approach. The red points represent 
Thalidomide, while the remaining points correspond to the test dataset of SIDER
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the model’s proficiency in learning and represent-
ing potential toxicophores through guidance from the 
fragment branch. Such congruence underscores FATE-
Tox’s utility in formulating hypotheses for potential 3D 
toxicophores.

Carcinogenicity of Sudan I
Sudan I exhibits high carcinogenic potential due to its 
aromatic azo group (-N=N-R), which, releases DNA-
binding aromatic amines that induce mutations. In detail, 
the azo bond is known to be bio-reduced by azoreduc-
tases to yield primary aromatic amines, further metabo-
lized by cytochrome P450 to form nitrenium ions that 
react with guanine residues in DNA. Such reaction pro-
cess results in DNA adducts and causes mutagenesis. In 
addition, its electrophilic sulfonic acid groups increase 
mutagenic risk through reactivity with cellular macro-
molecules. Sulfonic acid groups also inhibit conjugation 
reactions crucial for detoxification pathways, leading 
to prolonged retention of carcinogenic intermediates 

and increased risk of DNA damage [68–70]. Metabolic 
processing, particularly in the liver, further transforms 
Sudan I into reactive carcinogenic byproducts, leading 
to DNA damage and potential cancer initiation. FATE-
Tox accurately predicts Sudan I in the test set as highly 
carcinogenic (probability: 0.9899) by capturing these 
key toxicophores and identifying critical substructures 
in 3D space, including the azo and sulfonic acid groups 
(Fig.  6). Through interpretable visualizations of atten-
tion coefficients, FATE-Tox highlights these regions with 
high importance, aligning with literature on carcinogenic 
mechanisms and enhancing predictive reliability for tox-
icity assessment.

Conclusion and future works
In this study, we presented a novel toxicity prediction 
framework leveraging a dual-branch architecture that 
integrates atom-level and multiple fragment-level fea-
tures. By combining graph-based transformers with 

Table 5  Identification of important substructures in anti-histamines and beta-blockers. Averaged attention coefficients are visualized, 
with the molecule’s corresponding BRICS decomposition



Page 14 of 16Ha et al. Journal of Cheminformatics           (2025) 17:74 

E(3)-equivariant graph neural networks, our approach 
effectively captures the spatial dependencies and chemi-
cal properties necessary for accurate toxicity predictions. 
Our model demonstrated the ability to discriminate 
between enantiomers, which are separable only in 3D 
space, and identify potential 3D toxicophores in align-
ment with literature through attention visualization. The 
implementation of multiple fragmentation methods, each 
of which exhibits varying levels of importance depending 
on the dataset, enables the model to capture both gen-
eralizable and task-specific patterns. This flexible fea-
turization strategy, combined with spatial and relational 
processing, enhances the model’s ability to provide com-
prehensive predictions of toxicity endpoints, especially 
within the multi-task learning setting. Incorporation of 
PCGrad maximizes the benefits of our setting by remov-
ing conflicting components to ensure balanced optimi-
zation, thereby improving prediction performance in 
multi-task learning setting.

While our model achieved promising results, future 
research could explore adaptive fragmentation strategies 
that dynamically adjust to the chemical context, 
further improving the interpretability and predictive 
performance of the model. Additionally, extending the 
model to account for time-dependent toxicity patterns 
(e.g., bioaccumulation or metabolic pathways) could 
provide a more comprehensive understanding of long-
term chemical effects. By addressing these areas, we 
envision developing a comprehensive, interpretable, 
and scalable system for toxicity prediction that bridges 
the gap between in-silico modeling and real-world 
applications.
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