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Abstract 

In this study, we introduce a novel approach for predicting two key drug properties, blood–brain barrier (BBB) per‑
meability and human intestinal absorption via Caco‑2 permeability. Our methodology centers around a specialized 
neural network, the atom transformer‑based Message Passing Neural Network (MPNN), which we have combined 
with contrastive learning techniques to enhance the process of representing and embedding molecular structures 
for more accurate property prediction. These innovative models focus on predicting BBB and Caco‑2 permeability 
‑two critical factors in drug absorption and distribution‑ which fall under the broader scope of ADMET (absorption, 
distribution, metabolism, excretion, and toxicity) properties. The models are readily accessible online through the Ena‑
los Cloud Platform which offers a user‑friendly, AI‑powered, ready‑to‑use web service that significantly streamlines 
the drug design process, enabling users to easily predict and understand the behavior of potential drug compounds 
within the human body.

Scientific Contribution Our study combines an atom‑attention Message Passing Neural Network (AA‑MPNN) 
with contrastive learning (CL), which significantly improves predictive accuracy. Our model leverages self‑supervised 
learning to expand the chemical space used in training and self‑attention mechanisms to focus on critical molecular 
features, enhancing both model accuracy and interpretability. Additionally, the ready‑to‑use web service based on our 
model democratizes access to predictive tools for the scientific and regulatory communities.
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Introduction
Molecular property prediction, a critical process in drug 
discovery, involves using models trained on molecules 
with known and established properties to estimate those 
of new compounds [1, 2]. This process is vital in the 
early stages of drug development, as it encompasses the 
identification of a range of molecular properties, such 
as lipophilicity, biological activity, and toxicity. Notably, 
absorption, distribution, metabolism, excretion, and tox-
icity (ADMET) properties are of paramount importance 
in drug discovery. These ADMET properties serve as 
key indicators of a drug candidate’s efficacy and safety. 
Up to 50% of clinical trial failures can be linked to issues 
with ADMET properties [3], underscoring the impor-
tance of these properties to the pharmaceutical industry. 
Given this context, the efficient and precise evaluation of 
ADMET properties is critical for streamlining the drug 
development pipeline.

The quantitative structure–activity/property relation-
ship (QSAR/QSPR) approach is a pivotal technique in 
the field of computer-assisted drug discovery (CADD) 
[4]. One of the strengths of the QSAR/QSPR approach 
is its use of statistical techniques to investigate the rela-
tionships between a molecule’s chemical structure and 
its associated properties [5]. This investigation is cru-
cial in developing models capable of accurately predict-
ing how a molecule will behave or react under various 
conditions. More recent advances within this field have 
increasingly incorporated machine learning (ML) algo-
rithms into QSAR/QSPR modeling [6], leading to signifi-
cant improvements, particularly in models focusing on 
ADMET-related properties. In particular, support vector 
machines (SVM) and random forest (RF) have become 
increasingly popular in modeling ADMET properties 
[7]. These algorithms offer enhanced computational 
power and sophistication, allowing for more nuanced 
and precise predictions compared to traditional statisti-
cal methods. A critical aspect to ensuring the reliability 
of the predictions made by QSAR/QSPR models is the 
accurate molecular representation [8, 9]. The molecule’s 
representation must encompass all relevant structural 
information, ensuring that the model can make accurate 
and useful predictions about the molecule’s properties 
and activities including receptor engagement and protein 
binding.

The traditional use of fingerprints, such as the 
Extended-Connectivity Fingerprints (ECFP) [10], and 
descriptors, while effective, often limits representation to 
a single dimension, potentially overlooking crucial topo-
logical structures of molecules. To address this, numer-
ous studies have shifted focus to 2D graphs for molecular 
representation [11]. This shift is significant as it enables 
a more comprehensive capture of molecular structures, 

offering a broader view of their complex arrangements 
from 1D to 3D. With the advent and adaptation of deep 
learning (DL) in processing chemical datasets, there has 
been a move towards novel forms of molecular repre-
sentations [12] in which molecules are represented as 
vectors in high-dimensional, artificially created spaces, 
called molecular embeddings. These DL models utilize 
molecular embeddings generated from standard chemi-
cal input data, such as string-based representations, 
with most common the Simplified Molecular Input Line 
Entry System (SMILES) [13] or chemical graphs [14, 15]. 
Molecular graphs, preserving rich structural informa-
tion are often more suitable for molecular property pre-
diction, as well as for tasks in chemical modeling and 
design [16–19]. There has been substantial application 
of Graph Neural Networks (GNNs) in molecular prop-
erty prediction tasks, especially graph convolutional 
networks (GCNs). Among the GNN variants, the mes-
sage-passing neural network (MPNN) and the directed 
MPNN (D-MPNN) stand out as classic methods for 
aggregating information from molecular graphs [20, 21]. 
The D-MPNN, proposed by Yang et  al. [21], employs a 
mixed representation involving convolution encoding of 
molecules and descriptors. This method prioritizes the 
encoding process and also enhances the model’s general-
izability, leading to more accurate predictions of molecu-
lar properties.

Recent advances have seen the integration of the self-
attention mechanism into MPNNs for an enhanced 
representation of molecular graphs [22–24]. This inte-
gration marks a significant shift from traditional mod-
els, whereby each atom and bond in a molecular graph 
is typically given equal significance in determining the 
predicted outcome. The incorporation of the self-atten-
tion mechanism allows the model to specifically focus 
on those substructures within the molecule that are 
most critical to the chemical property being predicted. 
This focus improves the overall accuracy of the model 
as well as enhancing its interpretability by enabling a 
clearer understanding of how different atomic or bond 
structures within a molecule contribute to its overall 
properties and to a property of interest. This enhanced 
interpretability is particularly beneficial in drug design, 
where understanding the relationship between molecu-
lar structure and function is crucial. Furthermore, the 
self-attention mechanism facilitates the visualization of 
molecular models. Liu et  al. [24] proposed integrating 
both additive attention and scaled dot-product attention 
at the atomic level into the MPNN framework. Addi-
tive attention in this context is used to calculate align-
ment scores for the hidden states of the encoder and the 
decoder through feed-forward layers [25]. These align-
ment scores effectively determine the focus areas of the 
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model, directing attention to specific atoms or bonds that 
are most informative for the prediction task. Scaled dot-
product attention, on the other hand, models interac-
tions between queries and keys using dot products [26]. 
This mechanism involves a scaling factor that adjusts 
these results, enabling the model to fine-tune its focus 
on different parts of the molecular structure. The scaled 
dot-product attention is particularly adept at captur-
ing complex relationships within the molecular graph, 
enhancing the model’s ability to learn nuanced represen-
tations of molecules.

To accurately predict molecular properties, three criti-
cal challenges need to be addressed: 1. Molecules need to 
be described in a computer-interpretable format to allow 
computers to process and understand the complex struc-
tures of molecules. 2. Molecules need to be transformed 
into feature vectors, numerical representations that 
encapsulate the essential characteristics of a molecule. 
This transformation is a key step in preparing the data for 
ML models, as it translates complex molecular informa-
tion into a format that algorithms can process and learn 
from; and 3. A predictive model needs to be trained with 
a large dataset of labeled molecules. The first two chal-
lenges, molecular representation and featurization are 
discussed above, with several approaches describing best 
each problem. However, the number of available labeled 
molecules for training is often insufficient for the needs 
of molecular prediction benchmarks. When ML models 
are trained on limited labeled data, there is a risk of over-
fitting, where the model performs well on the training 
data but poorly on new, unseen data, particularly if the 
new molecules are structurally different from those in the 
training set. To mitigate the risk of overfitting, self-super-
vised learning (SSL) has emerged as a promising solu-
tion [27–29]. SSL techniques are now being applied to 
pretrain GNNs by utilizing the vast amounts of available 
unlabeled molecular data and can significantly improve 
the performance of models in predicting molecular prop-
erties [27, 28, 30, 31].

Contrastive learning (CL), a prominent SSL algorithm, 
is extensively utilized for learning representations by dif-
ferentiating between similar and dissimilar samples. The 
essence of CL is its ability to discriminate between pairs 
of samples that are jointly sampled (viewed as similar) 
and those that are independently sampled (viewed as 
dissimilar) [32]. A critical application of CL is in Graph 
Contrastive Learning (GCL), where the goal is to learn 
unsupervised representations for molecular graphs [27]. 
This approach is particularly valuable in the domain of 
computational chemistry, where understanding the intri-
cate structures and properties of molecules is essential. 
In GCL, positive samples, representing similar molecu-
lar structures, can be constructed using various graph 

augmentation techniques, such as node or edge drop-
ping, shuffling, or attribute masking [27]. Each augmen-
tation creates a slightly different version of the original 
molecular graph, providing a basis for the model to learn 
the essential features of the molecules. In this way, the 
model learns to identify and emphasize the key features 
of the molecules that remain consistent across various 
augmentations, thereby gaining a deeper understanding 
of the inherent properties of the molecules.

In this work, we incorporate atom-attention MPNN 
(AA-MPNN) with molecular CL to boost the per-
formance of predictive models [24, 27], focusing on 
prediction of molecules that can penetrate the blood–
brain barrier (BBB) or be adsorbed through the intesti-
nal barrier. This integration focuses on using additive 
attention and scaled dot-product attention to high-
light critical substructures within the molecular graph, 
resulting in generation of more informative and detailed 
molecular representations. The additive and scaled dot-
product attention mechanisms selectively concentrate 
on key areas of the molecular graph, thereby improv-
ing the model’s ability to identify and process significant 
structural details linked to barrier penetration or adsorp-
tion. The proliferation of available molecular data has 
facilitated the development of a CL framework designed 
specifically to improve the learning of molecular repre-
sentations and thus the prediction of molecular proper-
ties. At the core of this framework is the atom-attention 
MPN encoder, which is initially pretrained on a sub-
stantial dataset of unlabeled molecules. This pretraining 
phase is critical for the model to learn general representa-
tions of molecular structures without the need for labeled 
data. A key strategy employed in this work involves the 
creation of positive molecule graph augmented pairs, a 
technique proposed by Wang et al. [27]. This technique, 
known as atom masking, involves selectively hiding cer-
tain atoms within the same molecule to generate varia-
tions of the molecular graph. These variations serve as 
positive pairs for CL, enabling the model to learn by 
comparing these positively paired graphs against nega-
tively paired ones from different molecular structures. 
Following the pretraining, the model employs a contras-
tive loss function to learn representations based on the 
contrasts between these positive and negative molecular 
graph pairs. After this phase, the model is further refined 
with a feed-forward network (FFN). This FFN is trained 
using specific datasets for downstream molecular prop-
erty prediction tasks. By employing this method, we 
demonstrate that pretraining on large, diverse chemical 
datasets significantly improves the performance of mod-
els in predicting molecular properties that are associated 
with biological barrier interaction. This work illustrates a 
sophisticated approach to enhancing molecular property 
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prediction models (in this case biological barrier pen-
etration or adsorption across a barrier) through a com-
bination of atom-attention MPNNs, molecular CL, and 
strategic data augmentation techniques. The effectiveness 
of this approach is underlined by its ability to accurately 
predict BBB permeability and human intestinal absorp-
tion, two critical aspects of drug absorption and distribu-
tion. The entire workflow of this research is detailed in 
Fig. 1, showcasing the comprehensive process from data 
preparation to model training and application.

Materials and methods
Datasets
Blood–brain barrier permeability
Clinical experiments to determine the BBB perme-
ability of compounds are both time-consuming and 
labor-intensive. The BBB serves as a primary defense 
mechanism, shielding the brain from exposure to poten-
tially toxic substances. Due to its restrictive nature, most 
compounds do not successfully penetrate the BBB mem-
brane. Evaluating BBB permeability is crucial for assess-
ing the potential toxicity of new pharmaceuticals. Over 
the years, several QSPR models have been developed to 
predict BBB permeation. For this study, a comprehen-
sive dataset of 7,807 compounds, categorized based on 

their BBB permeability (BBB + or BBB-), was compiled 
from the literature [33] to train the predictive model. The 
datasets used in this study were prepared using ChEMBL 
standardization and neutralization procedures, ensuring 
consistency in molecular structures and their represen-
tations [33]. Note that the focus of the dataset is on the 
chemical properties and provides no information on the 
nature of the exposures (in vitro, in vivo) nor any details 
of the comparability of the barrier models utilized. Our 
future work includes an exploration of the impact of the 
BBB models themselves.

Caco‑2 cell line permeability
The Caco-2 cell line model is a standard method for 
assessing the in  vitro membrane permeability of drugs. 
This method, however, requires a costly and time-con-
suming culturing process, prompting the need for a more 
rapid and accurate alternative to evaluate oral drug per-
meability. A significant literature dataset of data on the 
Caco-2 cell line permeability [34] was utilized. Any com-
pounds with unclear SMILES codes or permeability val-
ues outside the range of 10−3.5cm · s−1 to 10−8cm · s−1 , 
which are considered potential unreliable [35], were 
excluded. Furthermore, salts and solvents were removed, 
and the compounds were standardized. To determine 

Fig. 1 Illustration of the framework of the proposed method for molecular property prediction. A Pretraining module that consists of four 
components: atom masking for graph augmentation, D‑MPN encoder, multi‑head atom attention layer, and contrastive loss. B The entire 
framework: the atom attention D‑MPN encoder is pretrained using a large unlabeled dataset and the representations are projected 
through a multilayer perceptron projection head. Contrastive loss is utilized to maximize the agreement between positive pairs. As a result, 
the atom attention encoder learns representative features of the molecules. The pretrained parameters are transferred to a new model and are 
fine‑tuned for a specific molecular property prediction task. An FFN is randomly initialized and trained to predict the specific molecular property
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an objective threshold for classification, the remain-
ing compounds were then processed using the k-Means 
clustering algorithm to categorize them into two groups: 
permeable and non-permeable, based on their perme-
ability values [36]. Compounds with permeability values 
less than or equal to -5.5 logPapp units (10−5.5cm · s−1) 
were classified as non-permeable, while those with val-
ues greater than -5.5 logPapp units (10−5.5cm · s−1) were 
considered permeable. The resulting threshold aligns well 
with empirical cutoffs found in the literature, where pre-
vious studies have used the threshold of logPapp = -5.1 
to distinguish high and poor permeability [37]. Further-
more, Metoprolol with a logPapp value of -4.7 is consid-
ered by the FDA as the high permeability class boundary. 
Similarly, in another study, permeability values were 
classified as follows, logPapp < -6 for low permeability, 
-6 < logPapp < -5 for low-moderate permeability, -5 < log-
Papp < -4.7 for moderate-high permeability and log-
Papp >  = -4.7 for high permeability [38]. As a result, the 
threshold logPapp = -5.5 provides a reasonable approxi-
mation for distinguishing compounds between low and 
high permeability. More information regarding the distri-
bution of permeability values is available in Supplemen-
tary Information. The final modeling dataset comprised 
1,827 compounds, of which 1,127 (62%) were classified as 
permeable.

Pretraining dataset
For pretraining the atom-attention MPN encoder, we 
used 250,000 unique unlabeled molecule SMILES col-
lected from the ZINC15 database [39]. The ZINC15 
database was chosen for its extensive collection of com-
mercially available biomolecular compounds, which 
includes natural products, metabolites, and FDA-
approved drugs, making it highly relevant for our pre-
dictive modeling needs. The ZINC15 subset employed 
for pretraining was retrieved from Fang et  al. [40, 41], 
comprising drug-like and easily synthesizable molecules 
with diverse chemical scaffolds, as shown in Supplemen-
tary Information Figure S2, S3, Table  S2. As a result, it 
captures a broad segment of the chemical space, regard-
ing drug-like molecules. These features make it a robust 
dataset for pretraining our model. To ensure there was no 
data leakage, we verified that molecules in the BBB and 
Caco-2 cell line datasets were not present in the ZINC15 
pretraining set. We performed a structural similarity 
analysis between the BBB and Caco-2 cell line dataset 
and the ZINC15 database using Tanimoto similarity. By 
setting a similarity threshold of 85%, we found no com-
pounds in the Caco-2 dataset that were similar to those 
in the ZINC15 subset. The BBB dataset contained only 
four compounds with a similarity greater than 85% to 
ZINC15, none of which were identical to any compounds 

in the ZINC15 subset. A visualization of the maximum 
similarities between the datasets is available in Supple-
mentary Information Figure S4. This analysis confirms 
that there is a minimal overlap between the datasets. 
To facilitate effective model training and evaluation, we 
divided the pretraining dataset into a training and a vali-
dation set using a 90:10 split. This distribution allowed 
training of the model on a substantial portion of the data 
while reserving a smaller segment for validation pur-
poses, ensuring that the model is tested on unseen data, 
thereby evaluating its predictive performance accurately.

Directed message‑passing neural encoder
Each SMILES representation was converted into a 
directed graph. Conceptually, a molecule can be con-
sidered as a graph consisting of a set of atoms (nodes) 
and a set of bonds (edges) which represent interactions 
between each pair of adjacent atoms. A graph G = (V ,E) 
defines the connectivity relations between a set of nodes 
(V ) and a set of edges (E) . Thus, the graph-based repre-
sentation encodes properties or relationships of atoms 
and bonds locally with a collection of atom and bond fea-
ture vectors. The D-MPNN [21] framework involves two 
key phases to extract global features: the message-passing 
phase and the readout phase.

During the message-passing phase, the MPNN gradu-
ally integrates information from distant atoms by extend-
ing through bonds radially. In each message-passing step 
t (1 ≤ t ≤ T ) , over T iterations, the message mt

vw and the 
hidden state htvw from atom v given node features xv and 
edge features evw is updated as follows:

where Mt is a message function, Ut is an atom update 
function and Wh is the learn weight matrix. Node features 
xv are derived from atom type, the number of bonds the 
atom is involved in, formal charge, chirality, number of 
bonded hydrogens and atom’s hybridization. Edge fea-
tures evw are derived from bond type, ring status and 
stereochemistry. The detailed descriptions of node and 
edge features are displayed in Supplementary Informa-
tion Table S3 and S4, respectively. These features provide 
the essential information needed to model the molecu-
lar interactions effectively, thereby allowing the neural 
network to generate accurate predictions based on the 
molecular structure.

In the readout phase, all hidden representations of 
nodes are aggregated to a global representation for the 
entire graph as follows:

(1)mt
vw =

∑

w∈N (v)

Mt(h
t−1
v , ht−1

wv , evw)

(2)htvw = Ut

(

ht−1
vw ,mt

vw

)

= τ (h0v +Whm
t
vw)
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where hv is summed for a total T  steps and the readout 
function R is used to aggregate the characteristics y of the 
molecule.

Atom transformer‑based MPNN
The transformer is a relatively new DL approach that uses 
the attention mechanism to differentiate the importance 
of each part of the input data [26]. A self-attention layer 
takes the input hidden matrix H ∈ R

N×d , where d is the 
hidden dimension and N  is the number of entries. The 
input is associated with three matrices, a query matrix 
(Q = HWQ) , a key matrix (K = HWK ) , and a value 
matrix (V = HWV ) , where WQ,WK ,WV  are the param-
eter matrices. The self-attention in the Transformer is 
computed as follows for a single-head self-attention and 
a multi-head self-attention by multiplying with a param-
eter matrix Wo:

Molecules represented by SMILES are converted into 
molecular graphs which contain atom features ( xv) and 
bond features ( evw) as one hot encodings. Following the 
D-MPNN architecture, which consists of a message-
passing phase through directed bonds and a readout 

(3)Hv =
∑

v∈G
hv

(4)y = R({Hv|v ∈ G})

(5)

single head = Attention(Q,K ,V ) = softmax(
QKT

√
d

)V

(6)
multi head(Q,K ,V ) = Concat(head1, . . . , headh)Wo

phase, each bond is initialized with two feature vectors, 
for bidirectional bond messages. The atom features and 
bond features are first concatenated and passed through 
a weight matrix Wi and an activation function, produc-
ing the initial bond hidden state h0vw (Table 1: Initializa-
tion). In the message-passing phase, the bond message at 
each iteration t is updated by summing all the previous 
hidden states ht−1

kv , kǫNeighbor(v) except the hidden state 
of the opposite direction. The bond message mt

vw passes 
through a weight matrix Wh and is then concatenated 
with the initial bond hidden state h0vw and is fed into 
an activation function to generate the hidden state htvw 
(Table 1: Bond Embedding Phase). After T  message-pass-
ing iterations, the bond hidden states are aggregated and 
concatenated with atom features, and are transformed by 
a weight matrix ( W0 ) and an activation function produc-
ing the message of each atom mv.

A multi-head attention layer is then added during the 
readout phase to identify the relationship between the 
substructure and its contribution to the target prop-
erty. The atom attention layer takes as input a hidden 
matrix HaǫR

M×d , which is the aggregation of atom mes-
sages, where M is the number of atoms and d is the hid-
den dimension (Table 1: Atom Embedding Phase). After 
aggregating the atom messages over the molecule, the 
molecular vector is concatenated with the extended-
connectivity fingerprint (ECFP) and then entered into an 
FFN. The final output of the model is returned by a two-
layer FFN, predicting the property of interest (Table  1: 
Molecule aggregation). The architecture of the proposed 
Transformer-based MPNN is shown in Fig. 2.

Table 1 Pseudocode of the transformer‑based MPNN presented herein

Initialization

For each atom v in molecule G:
For each atom w in molecule Neighbor(v) :
h0vw ← ReLU(WiConcat(xv , evw)

Bond aggregation

While 1 ≤ t ≤ T :
For each atom in molecule G:
For each atom w in molecule Neighbor(v) :
mt

vw ←
∑

kǫNeighbor(v)h
t−1
kv − ht−1

wv

htvw ← ReLU(h0vw +Whm
t
vw)

Atom aggregation

For each atom v in molecule G :
mv ← ReLU

(

W0Concat
(

xv ,
∑

wǫNeighbor(v)h
T
vw

))

hv ← AtomAttention(mv)+mv

Molecule aggregation

h ←
∑

v∈Ghv
y ← FFN(Concat(h, hf ))
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Contrastive learning
CL leverages SSL on extensive amounts of unlabeled 
data, enabling models to capture rich semantic informa-
tion about molecules [42]. This method involves learn-
ing representations by contrasting positive example data 
pairs with negative example data. In the molecular com-
parative learning scheme implemented here, a batch of 
N  molecules was randomly selected and their positive 
samples generated, resulting in 2N  molecular samples. 
Drawing on the methodologies developed by Chen et al. 
[43], You et al. [44], and Fang et al. [40], our objective is 
to minimize the similarity within each sample of posi-
tive pairs while maximizing the dissimilarity between the 
negative pairs. In the representation space, our goal is 
for positive pairs to be as close as possible and for nega-
tive pairs to be as distant as possible. To achieve this, the 
cosine similarity function was employed to measure the 
distance or similarity between two vector representations 
z1 , z2 in the projection space, defined as:

The CL framework utilizes a normalized temperature-
scale cross-entropy loss (NT-Xent loss) [43]. The training 
objective for graph Gi and Gi′ is defined as:

(7)sim(z1,z2) =
zT1 z2

�z1� · �z2�

(8)Li,j = −log
esim(zi ,zi

′)/τ

∑N
j=1

(

esim(zi ,zj ′)/τ + esim(zi ′,zj)/τ
)

where, τ denotes the temperature parameter and 
sim(z1, z2) is the cosine similarity.

For molecular graph data augmentation, various 
approaches have been proposed, with GCL outlining a 
comprehensive graph learning scheme for learning unsu-
pervised representations of molecular graphs [44]. In our 
study, we utilized atom masking to create a positive pair 
of samples, masking atoms in the molecule randomly 
with a ratio of 25%. When an atom is masked, its atom 
feature xv is replaced by a mask token m , which is distinct 
from any other atom features in the molecular graph. 
This method of atom masking allows the model to learn 
the intrinsic features of molecules by focusing on the 
unmasked portions of the molecule, enhancing its ability 
to generalize from partial data.

Model training and evaluation
For the model training, each atom in the molecular graph 
is characterized by specific features such as atomic num-
ber, degree of freedom, formal charge, chirality, the num-
ber of bonded hydrogens, and the atom’s hybridization. 
Similarly, each bond within the molecule is described by 
its type, stereochemistry, and presence in a ring. Both 
the MPNN and the atom transformer were implemented 
using Python and PyTorch version 2.0 [45]. To enhance 
model performance, hyperparameters were optimized 
using Bayesian Optimization, applying consistent param-
eters across 20 epochs and 20 iterations [46].

The model was optimized for both datasets, BBB and 
Caco-2 cell line, focusing on four hyper-parameters as 

Fig. 2 Diagram of the transformer‑based MPNN. The framework consists of A a D‑MPNN, B an atom attention multi‑head transformer, and C a FFN 
to predict the property of interest (in this case the molecule’s ability to cross a biological barrier). Each component in this figure represents different 
vector representations within the model, as defined in the pseudocode in Table 1
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detailed in Table  2. Optimization was carried out using 
the Adam optimizer with learning rates lr ranging from 
10−4 to 10−3 . The optimal parameters were selected 
based on the highest performance scores obtained on 
the validation set during the training phase. The datasets 
were divided using a random split approach, allocating 
85% for training and 15% for testing. The training sub-
set was further divided into calibration and validation 
sets with a split ratio of 70:15. Five-fold cross-validation 
(CV) was performed on these partitioned data splits, and 
reported as the mean and standard deviation of the eval-
uation metrics. The final evaluation of the selected model 
was conducted using the test set to verify the model’s effi-
cacy on predicting unseen data. This rigorous validation 
scheme, as depicted in Fig. 3, ensures that our model is 
robust and reliable, suitable for practical applications in 
predicting molecular properties, in this case biological 
barrier crossing.

During the pretraining phase, positive pairs were cre-
ated by masking 25% of the total atoms in each molecule, 
a technique aimed at reducing the normalized tempera-
ture-scaled cross-entropy loss (NT-Xent) loss between 
these pairs. For downstream tasks, the molecular vector h 
is concatenated with the molecular fingerprint hf  and an 
FFN is initialized atop the atom-attention MPN encoder 
(as shown in Fig. 2). In this setup, which focuses on clas-
sification tasks, binary cross-entropy loss is utilized to 
gauge model performance.

Evaluation protocols
The performance of our model was assessed primarily 
using the area under the receiver operating characteris-
tic curve (ROC-AUC) where higher values signify better 
performance. This metric is critical as it measures the 
ability of the model to distinguish between classes effec-
tively. In addition to ROC-AUC, we employ several other 
metrics to provide a comprehensive evaluation, including 
accuracy, precision, sensitivity and specificity (Supple-
mentary Information Table S5).

Results and discussion
Empirical evaluation of our proposed atom-attention 
MPNN (AA-MPNN) model is presented and its effec-
tiveness is demonstrated. Through rigorous testing and 

analysis, the capabilities and performance improvements 
brought about by integrating atom-attention mecha-
nisms into the MPNN framework are highlighted. By 
assessing the model across various metrics and scenarios, 
its utility in practical applications and its contribution to 
the field of molecular property prediction can be better 
understand.

Main results on molecular property prediction
The first analysis considers whether the proposed CL 
approach performs better than the non-pretrained 
QSPR model. To assess the effectiveness of CL, we first 
evaluated the performance of the models using fivefold 
cross-validation on the training data. Table  3 summa-
rizes the average performance metrics across all folds. 
Models incorporating CL consistently outperformed 
the non-pretrained models, demonstrating improved 

Table 2 Bayesian Optimization for Hyperparameter tuning

Hyperparameter Values

Message‑passing iteration 2, 3, 4, 5, 6

Batch size 128, 256, 512

Dropout probability [0.0, 0.4] (Interval: 0.05)

Number of layers in FFN 2, 3

Fig. 3 Analysis workflow, model implementation, as presented here 
for an atom transformer‑based MPNN model
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evaluation metrics. More specifically, for BBB perme-
ability prediction, the model without CL achieved an 
average ROC-AUC of 0.944 + 0.007 and an average 
accuracy of 0.874 + 0.008. When using CL, the model 
achieved an ROC-AUC of 0.951 ± 0.006 and accuracy of 
0.882 ± 0.013. For Caco-2 permeability, the model with-
out CL obtained an average ROC-AUC of 0.905 + 0.022 
and an accuracy of 0.842 + 0.024, while model with 
CL achieved ROC-AUC of 0.919 ± 0.019 and accu-
racy of 0.848 ± 0.032. These results highlight the ben-
efits of CL, consistently leading to enhanced predictive 
performance across both permeability tasks. More 
details about each fold are available in Supplementary 
Information Figure S5 and Figure S6, highlighting the 
stability of these findings across data splits. During 
fine-tuning for both downstream tasks, we optimized 
the hyper-parameters defined in Table  2, to find the 
best performing setting on the validation set and pre-
sent the results on the test set.

Following model selection based on cross-valida-
tion, we evaluated the performance on external test 
set (Table 4). Consistent with CV results (Table 3), the 
pretrained models outperformed the non-pretrained 
models, reinforcing the advantages of pretraining for 

Table 3 Evaluation metrics for BBB and Caco‑2 permeability on 
fivefold cross‑validation for models with and without CL

BBB Permeability Caco‑2 Permeability

Metrics Without CL With CL Without CL With CL

ROC‑AUC 0.944 + 0.007 0.951 ± 0.006 0.905 + 0.022 0.919 ± 0.019

Accuracy 0.874 + 0.008 0.882 ± 0.013 0.842 + 0.024 0.848 ± 0.032

Precision 0.879 + 0.004 0.892 ± 0.009 0.850 + 0.026 0.855 ± 0.025

Sensitivity 0.929 + 0.013 0.927 ± 0.018 0.813 + 0.031 0.897 ± 0.037

Specificity 0.776 + 0.009 0.803 ± 0.015 0.746 + 0.040 0.756 ± 0.062

Table 4 Evaluation metrics for BBB and Caco‑2 permeability 
prediction for test set with and without CL

BBB Permeability Caco‑2 Permeability

Metrics Without CL With CL Without CL With CL

ROC‑AUC 0.944 0.953 0.896 0.914

Accuracy 0.868 0.885 0.828 0.872

Precision 0.866 0.898 0.801 0.846

Sensitivity 0.939 0.926 0.929 0.949

Specificity 0.740 0.812 0.695 0.771

Fig. 4 ROC curves of the models (BBB model, Caco‑2 cell line model) with CL and without CL, and their respective AUCs
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molecular representation learning. The comparison of 
the ROC curves (Fig. 4) between model with and with-
out CL also indicates the better performance of the 
model with CL.

By leveraging the atom-attention MPNN model 
enhanced with CL, our approach significantly improves 
the accuracy of molecular property predictions, which 
is pivotal for computational drug discovery. The integra-
tion of sophisticated ML techniques, such as CL, enables 
a more refined representation of molecular structures, 
essential for identifying potential drug candidates with 
desired properties. Furthermore, the enhancements 
observed in ROC-AUC, accuracy, precision, sensitivity, 
and specificity substantiate the atom-attention MPNN 
with CL model’s capability to effectively distinguish 
between permeable and non-permeable molecules—cru-
cial for reliable drug screening processes. These metrics 
illustrate the model’s proficiency in predicting interac-
tions of molecules with biological barriers, such as the 
blood–brain barrier or intestinal walls, which are critical 
considerations in the pharmacokinetics of drug design.

The t-distributed Stochastic Neighbor Embedding 
(t-SNE) technique [47] was also applied to visualize the 
molecular representations learned by the MPN encoder. 
As a dimensionality reduction tool, t-SNE excels in vis-
ualizing high-dimensional data in 2D space. Through 
this method, molecules with similar properties in high-
dimensional space are mapped to nearby points in low-
dimensional space, while those with dissimilar properties 
are positioned further apart. As depicted in Fig. 5, t-SNE 
analysis on the BBB and Caco-2 cell line datasets effec-
tively compares the results of the applied pretraining 
strategy against non-pretrained models. Post-pretrain-
ing, the model’s representations show distinct cluster-
ing characteristics, with molecules bearing similar labels 
clustering more closely. This underscores the efficacy of 
pretraining in boosting the accuracy of downstream clas-
sification tasks. Such visual insights not only confirm 
the benefits of the pretraining but also shed light on the 
molecular diversity managed by the model, aiding in the 
exploratory analysis of molecular structures which may 
lead to the identification of new biomarkers or therapeu-
tic targets, in this case for neurodegenerative or other 

Fig. 5 Investigation of molecular representation based on t‑SNE analysis. A t‑SNE analysis on non‑pretrained MPN encoder on BBB dataset. B t‑SNE 
analysis on pretrained MPN encoder on BBB dataset. C t‑SNE analysis on non‑pretrained MPN encoder on Caco‑2 cell line dataset. D t‑SNE analysis 
on pretrained MPN encoder on Caco‑2 cell line dataset
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brain-related conditions and for oral delivery via cross-
ing of the intestinal barrier. The consistent performance 
across multiple folds of CV highlights the robustness and 
generalizability of our model. This reliability is crucial in 
pharmaceutical research, where predictive models must 
consistently identify potential efficacy and safety of com-
pounds before proceeding to expensive clinical phases. 
The robust performance reassures users of the utility of 
our model in real-world settings which are characterized 
by a wide variability in molecular data.

Chemical scaffold and chemical space analysis of datasets
The quality of the data is crucial for the development of 
a robust predictive model. To assess the chemical diver-
sity and distrubution of data in the chemical space, the 
Murcko scaffold approach was utilized. The Murcko scaf-
fold is the unique ligand and ring system remaining after 
removing all substituents [48]. Using this method, we 
analyzed the chemical diversity of the BBB and Caco-2 
datasets. The BBB contains 2,129 unique Murcko scaf-
folds, whereas the Caco-2 dataset comprises of 1,027 
unique Murcko scaffolds. Notably, 67% of scaffolds in the 
BBB dataset and 85% of scaffolds in the Caco-2 dataset 
are generated by only one or two molecules, highlighting 
the diversity within the datasets. Furthermore, the aver-
age Tanimoto similarity of each compound in each data-
set was calculate to visualize the chemical diversity and 
chemical space distribution. The similarity heatmaps pre-
sented in Fig.  6 illustrate these distributions, providing 
insights into the structural diversity across the datasets.

The presence of a large number of unique scaffolds, 
along with the distribution of molecular structures, indi-
cates that the datasets cover a broad and diverse chemi-
cal space, ensuring a comprehensive representation of 
different structural categories. To explore the impact of 
scaffold diversity on model performance, we evaluated 
our model only on test compounds whose scaffolds were 
absent from the training dataset. On these compounds, 
our BBB permeability model achieved an AUC of 0.795, 
while the Caco-2 permeability model achieved an AUC of 
0.897 for compounds with scaffolds absent in the training 
dataset.

Comparison of model performance
Our findings align with and extend the results of previ-
ous studies in this domain. For instance, Hamzic et al. 
improved the prediction of brain penetration by inte-
grating in  vitro experimental data as auxiliary tasks 
resulting in Matthew’s correlation coefficient (MCC) 
of 0.66, sensitivity of 0.96 and specificity of 0.63 [49]. 
Kumar et  al. introduced a novel approach, the clas-
sification read-across structure activity relationship 
(c-RASAR) to improve BBB permeability prediction, 
resulting in AUC of 0.92 and sensitivity of 0.88 [50]. 
While we cannot directly compare our results due to 
different data partitioning and splitting techniques, 
our model achieved an AUC of 0.95, sensitivity of 0.93 
and specificity of 0.81, demonstrating strong perfor-
mance in predicting BBB permeability. Additionally, 
recent studies for Caco-2 permeability prediction have 
explored both QSPR-based and DL approaches. For 

Fig. 6 Tanimoto Similarity Matrix of  A. BBB dataset and B. Caco‑2 dataset
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instance, a supervised recursive ML approach was used 
for predicting Caco-2 permeability resulting in models 
with root mean squared error (RMSE) values between 
0.43 and 0.51 [38]. Similarly, a multi-embedding-based 
synthetic network has shown superior predictive per-
formance across various pharmacokinetic proper-
ties, including membrane permeability, with a mean 
absolute error of 0.41 [51]. While these methods pro-
vide high predictive performance, our atom-attention 
MPNN model offers additional advantages by lever-
aging CL and self-attention mechanisms to enhance 
interpretability. By identifying critical atomic contri-
butions to permeability, our approach enables a deeper 
understanding of molecular features influencing barrier 
crossing, thereby facilitating rational drug design.

Furthermore, the results of our method were com-
pared with commonly used ML models for property 
prediction. In each QSPR task, we built RF, SVM, FFN 
and AA-MPNN with CL. We used ECFP as inputs to 
RF, SVM and FFN to compare with AA-MPNN-CL 
which also concatenated the molecular vectors with 
ECFP in the last layers of the model. In addition, while 
AA-MPNN-CL incorporates ECFP features in its final 
FFN, we also evaluated a version of AA-MPNN-CL 
trained without ECFP to assess the impact of molecu-
lar representations learned by atom-attention message 
passing and contrastive learning alone. The results, 
summarized in Table  5, indicate that AA-MPNN-
CL without ECFP still achieves strong performance 
(ROC-AUC of 0.938 ± 0.008 of BBB permeability and 
ROC-AUC of 0.904 ± 0.019 for Caco-2 permeability) 
compared to other methods, demonstrating the pre-
dictive power of the learned representations. How-
ever, incorporating ECFP further enhances predictive 
accuracy, with AA-MPNN-CL with ECPF achieving 
ROC-AUC of 0.951 ± 0.006 for BBB permeability and 
0.919 ± 0.019 for Caco-2 permeability. These results 

suggest that atom-attention message passing and 
contrastive learning effectively captures molecular 
information compared to single fingerprint-type repre-
sentations. By combining these molecular vectors with 
ECFP fingerprints, enhances performance by leveraging 
complementary structural features.

Web service for property prediction powered by Enalos 
cloud platform
The predictive models developed in this study are readily 
accessible to the public for use and validation through the 
Enalos Cloud Platform. This web-based service hosts two 
key models: the Blood–Brain Barrier permeability model 
and the Caco-2 cell permeability model. These models 
are available at the following URLs:

• BBB perme abili ty model:  Enalo s Cloud  BBB Perme 
abili ty

• Caco- 2 cell line perme abili ty:  Enalo s Cloud  Caco- 2 
Perme abili ty

The Enalos Cloud Platform is specifically designed to 
support researchers and professionals in the pharmaceu-
tical and biochemical sectors by providing a robust tool 
for the computational prediction of molecular perme-
ability. The platform enables the calculation of perme-
ability for untested molecules, facilitating the process of 
drug discovery and development with high efficiency and 
accuracy. All models presented in this study were trained 
on the NVIDIA DGX Station, a high-performance 
AI workstation with four NVIDIA Tesla V100 GPUs. 
Moreover, the Enalos Cloud Platform itself is hosted 
and running on the NVIDIA DGX Station, leveraging its 
computational power to deliver real-time predictions.

The user interface of the Enalos Cloud Platform is 
designed to ensure ease of use, making advanced com-
putational tools accessible even to users without exten-
sive technical or programming knowledge (Figs.  7,   8). 
Researchers can input molecular structures in several 
formats:

• By entering the SMILES notation directly into the 
platform.

• By drawing the chemical structure using an inte-
grated molecular drawing tool.

• By uploading a structure data file (.SDF) containing 
the molecular information.

Upon submission of the molecular information, the 
platform processes the input data to predict whether a 
compound is likely to be permeable or non-permeable 
across the BBB or Caco-2 cell barrier. The results are 

Table 5 Comparisons of performance with ML models on QSPR 
tasks

Dataset Method ROC‑AUC 

BBB permeability RF‑ECFP 0.911 ± 0.004

SVM‑ECFP 0.901 ± 0.007

FFN‑ECFP 0.921 ± 0.005

AA‑MPNN‑CL (without ECFP) 0.938 ± 0.008

AA‑MPNN‑CL (with ECFP) 0.951 ± 0.006

Caco‑2 permeability RF‑ECFP 0.869 ± 0.013

SVM‑ECFP 0.874 ± 0.011

FFN‑ECFP 0.885 ± 0.011

AA‑MPNN‑CL (without ECFP) 0.904 ± 0.019

AA‑MPNN‑CL (with ECFP) 0.919 ± 0.019

https://www.enaloscloud.novamechanics.com/EnalosWebApps/bloodbrainbarrierpermeability/
https://www.enaloscloud.novamechanics.com/EnalosWebApps/bloodbrainbarrierpermeability/
https://www.enaloscloud.novamechanics.com/EnalosWebApps/caco2celllinepermeability/
https://www.enaloscloud.novamechanics.com/EnalosWebApps/caco2celllinepermeability/
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provided in a matter of seconds, displaying not only the 
permeability status but also a visual representation of the 
molecule. This visualization includes a heatmap color-
ing to indicate the atom attention (AA) weights, offering 
insights into which parts of the molecule most signifi-
cantly impact its predicted permeability. This feature, as 
outlined in the "Interpretability and Visualization" section 
below, is invaluable for researchers seeking to understand 
the molecular basis of the model’s predictions, enhancing 

both the interpretability and applicability of the results. 
The Enalos Cloud Platform thus serves as a critical tool 
in streamlining the evaluation of molecular properties, 
significantly reducing the time and resources typically 
required for such activities. By integrating advanced pre-
dictive models with user-friendly interfaces, the platform 
democratizes access to cutting-edge computational pre-
dictions and supports the broader scientific community 
in advancing drug design and chemical research.

Fig. 7 User‑interface and results page for the Atom‑Attention (AA) MPNN model for BBB permeability model
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Interpretability and visualization
The ability to interpret the results from complex DL 
models is crucial. Most DL models are considered "black 
boxes" because they provide limited insight into how 
they predict the properties of compounds, and which 
molecular substructures contribute significantly to the 
final predictions. This lack of transparency can hinder 
the broader acceptance of and trust in the results these 

models produce. In our AA-MPNN model, however, we 
enhance interpretability through the use of the atom-
attention layer, which allows us to access attention weight 
scores. These scores highlight the specific interactions 
and importance of various molecular substructures in 
relation to the predicted outcomes, in this case barrier 
permeability. By investigating the latent linkages between 
these substructures and the predicted endpoint, insights 

Fig. 8 User‑interface and results page for Αthe Atom‑Attention (AA) MPNN model for Caco‑2 cell permeability model
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into the molecular mechanics that drive the model’s deci-
sions are obtained. Furthermore, employing color-coded 
heat maps for each molecule simplifies the visualization 
of these atomic attention weights. This visualization tech-
nique makes it straightforward to identify which parts 
of the molecule are crucial for determining drug perme-
ability. For instance, areas highlighted with more intense 
colors in the heat map indicate regions of the molecule 
that have a stronger influence on the model’s predictions. 
This not only aids in understanding the model’s function 
but also provides valuable insights into the pharmacoki-
netic properties of the compounds, such as their ability 
to penetrate biological barriers.

For our study, we selected a critical therapeutic target 
in order to evaluate the permeability of its inhibitors and 
to visualize the outcomes. The target in question is the 
Endoplasmic Reticulum Aminopeptidase 1 (ERAP1) pro-
tein, known for its aminopeptidase activity, which plays 
a pivotal role as a "molecular ruler" in shaping the major 
histocompatibility complex I (MHC I) immunopepti-
dome. ERAP1 is implicated in various autoimmune and 
autoinflammatory conditions, including Ankylosing 
Spondylitis, Inflammatory Bowel Disease, Psoriasis, and 
certain cancer types [52]. This association makes ERAP1 
a significant point of interest in therapeutic research. 
To investigate the effectiveness of the model for pre-
dicting permeability, we used three selective inhibitors 
of ERAP1 namely DG013A which is a phosphinic acid 
tripeptide mimetic, 4-methoxy-3-(N-(2-(piperidin-1-yl)-
5-(trifluoromethyl)phenyl) sulfamoyl) benzoic acid, and 
(1-(1-(4-acetylpiperazine-1-carbonyl)cyclohexyl)-3-(p-
tolyl)urea [53, 54], as probes to study their permeability 
properties (Fig. 9). These inhibitors are crucial for under-
standing how impacting ERAP1 activity affects disease 
mechanisms and for evaluating the potential side effects 
and efficacy of ERAP1-targeted therapies in clinical set-
tings. By analyzing the permeability of these inhibitors, 
we can gain insights into their ability to reach and inhibit 
the ERAP1 enzyme within the human body, which is 
essential for their effectiveness as therapeutic agents.

In this study, it was noted that the atom-attention 
layer of the model is discriminating in terms of its 
focus on various molecular substructures depending 
on the specific downstream molecular property pre-
diction task. This adaptive focusing is particularly evi-
dent in how different functional groups are highlighted 
in the model predictions. For example, sulfonamide 
groups are consistently highlighted as having a nega-
tive impact on permeability in the BBB model. This 
observation is supported by literature [55], which notes 
that sulfonamide groups significantly reduce perme-
ability due to their chemical properties. Benzene rings 
are generally associated with negative contributions 

to permeability predictions, while cyclohexane usually 
exhibits a positive influence, enhancing permeability 
across barriers in most scenarios. For the BBB perme-
ability predictions, the AA MPNN model identified 
inhibitors A, B and C as low-permeable. To improve 
the permeability of the non-permeable compounds, we 
explored structural modifications, which are illustrated 
in Fig. 10. For inhibitor A, removing the benzene ring 
increases permeability. For inhibitor B, replacing the 
polar carboxyl group with a non-polar, hydrophobic 
methyl group altered its permeability profile, increas-
ing its predicted permeability from non-permeable to 
more permeable. This change suggests that the car-
boxyl group’s polarity might hinder its ability to cross 
the lipid-rich BBB membrane, while the methyl group 
enhances the compound’s overall lipophilicity, facilitat-
ing its transit. In the case of inhibitor C, substituting 
pyrazine with cyclohexane resulted in a more lipophilic 
compound with a reduced molecular weight, which 
positively affected its permeability characteristics. This 
modification highlights how small changes in molecu-
lar structure can significantly impact a drug’s ability to 
penetrate biological barriers.

Validation of models on compounds from the literature
To further validate our models externally, we conducted 
a literature search to identify compounds with well-doc-
umented experimental permeability data that were not 
included in our training dataset. For example, varenicline 
is a partial agonist of the nicotinic acetylcholine recep-
tor and its known to cross the BBB effectively [56], while 
nicotine rapidly crosses the BBB due to its small size and 
lipophilicity, leading to fast central nervous system effects 
[57]. Our model correctly classified both compounds as 
permeable. On the other hand, dopamine, which can-
not efficiently cross the BBB in its native state due to 
its polarity, was correctly predicted as a low permeable 
compound [58]. In contrast, its prodrug, levodopa, which 
utilizes transporters to cross the BBB, was predicted as 
permeable [59]. Levodopa, modified by β-carboxylation 
to generate an amino acid backbone, crosses the BBB 
with this modification enhancing its permeability as 
shown in Supplementary Information Table S6.

For intestinal absorption prediction, our model cor-
rectly predicted antipyrine as permeable, which is a small 
lipophilic molecule with high permeability across intes-
tinal barrier [60]. Similarly, caffeine, which is in class I 
of the Biopharmaceutics Classification System and has 
excelent intestinal absorption, was also predicted as 
permeable. Acyclovir, a dopamine antagonist, has low 
intestinal permeability and low oral bioavailability. Our 
prediction of low permeability comes in agreement with 
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Fig. 9 Visualization of the atom attention weights of three selective inhibitors of ERAP1. Atoms with positive contribution to permeability are 
colored in green, while atoms with negative contribution are colored in red. The intensity of the color indicates the absolute value of the attention 
weights. A DG013A, B 4‑methoxy‑3‑(N‑(2‑(piperidin‑1‑yl)‑5‑(trifluoromethyl) phenyl)sulfamoyl)benzoic acid, C (1‑(1‑(4‑acetylpiperazine‑1‑carbonyl)
cyclohexyl)‑3‑(p‑tolyl)urea
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known data, as it exhibit poor passive absorption and 
aligns with the literature. These validation results (Sup-
plementary Information Table  S6 and S7) demonstrate 
that our models effectively distinguish between high- and 
low-permeability compounds, with predictions aligning 
well with established experimental data.

Conclusions
In this study, we have developed a sophisticated message-
passing framework that leverages CL to enhance the 
traditional molecular property prediction process. This 
framework incorporates both additive and scaled dot-
product attention mechanisms at the atomic level, ena-
bling our atom-attention MPNN model to focus more 

Fig. 10 Modifications of initial molecular structures of the ERAP1 enzyme inhibitors to design permeable compounds
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precisely on critical molecular features that drive the 
desired behaviour, in this case barrier crossing. Com-
bined with CL, this approach has yielded significant 
improvements in predictive accuracy, particularly for 
BBB permeability and human intestinal permeability pre-
diction, two key ADMET properties that influence drug 
absorption and CNS penetration.

By pretraining the atom-attention MPNN on a large, 
unlabeled dataset, the model has been able to learn 
robust and comprehensive molecular representations. 
This extensive pretraining allows the model to effec-
tively generalize across the vast chemical space, a critical 
factor in its improved performance relative to the non-
pretrained model. The use of self-attention mechanisms 
plays a pivotal role in this context, as it enhances the 
model’s ability to extract and emphasize molecular repre-
sentations that are most relevant to the properties being 
predicted. This targeted focus aids in achieving more 
accurate and reliable prediction results.

A key aspect of our study involved the use of three 
selective inhibitors of the ERAP1 protein to test the 
model’s effectiveness. The results demonstrated how 
self-attention mechanisms can significantly enhance the 
model’s interpretability by clearly highlighting the impact 
of specific molecular substructures on barrier permeabil-
ity. Notably, our findings revealed that different molecu-
lar substructures influence the ability of compounds to 
cross specific barriers, as evidence by the identification 
of different “driving” features for BBB and Caco-2 per-
meability. Furthermore, we validated our models on 
compounds found in the literature with experimental 
permeability data. These findings not only validate the 
model’s predictive capabilities but also shed light on the 
underlying atomic interactions and contributions to the 
observed permeability outcomes.

To make these advanced computational tools more 
accessible to the broader scientific community, the two 
models have been deployed as web applications through 
the Enalos Cloud Platform. This online platform allows 
users to easily input molecular structures and receive 
permeability predictions in real-time, alongside visuali-
zation of the areas in the molecular structure that most 
affect barrier crossing and as such could act as sites for 
structural modification of the molecule to increase per-
meability. The web applications provide a user-friendly 
interface that requires no prior programming knowledge, 
thereby democratizing access to state-of-the-art predic-
tive technologies for drug discovery.
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