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Abstract 

In the drug discovery process, where experiments can be costly and time-consuming, computational models 
that predict drug-target interactions are valuable tools to accelerate the development of new therapeutic agents. 
Estimating the uncertainty inherent in these neural network predictions provides valuable information that facilitates 
optimal decision-making when risk assessment is crucial. However, such models can be poorly calibrated, which 
results in unreliable uncertainty estimates that do not reflect the true predictive uncertainty. In this study, we com-
pare different metrics, including accuracy and calibration scores, used for model hyperparameter tuning to investi-
gate which model selection strategy achieves well-calibrated models. Furthermore, we propose to use a computa-
tionally efficient Bayesian uncertainty estimation method named HMC Bayesian Last Layer (HBLL), which generates 
Hamiltonian Monte Carlo (HMC) trajectories to obtain samples for the parameters of a Bayesian logistic regression 
fitted to the hidden layer of the baseline neural network. We report that this approach improves model calibration 
and achieves the performance of common uncertainty quantification methods by combining the benefits of uncer-
tainty estimation and probability calibration methods. Finally, we show that combining post hoc calibration method 
with well-performing uncertainty quantification approaches can boost model accuracy and calibration. 

Scientific contribution 

 In this work we provide a comprehensive probability calibration study using neural networks for drug-target interac-
tion predictions. We report a significant effect of the hyperparameter selection strategy, as well as uncertainty estima-
tion and probability calibration approaches on the reliability of uncertainty estimates, which is crucial for an efficient 
drug discovery process.
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Introduction
The development of safe and effective drugs is a chal-
lenging task associated with high development costs, a 
high risk of adverse effects or lack of efficacy, which can 
lead to the failure of a drug candidate or to long approval 
processes until a drug can be brought to the market [1, 
2]. Machine learning models have emerged as a valuable 
tool, revolutionizing the drug discovery and development 
process by shifting to a more time- and resource-efficient 
pipeline [3–5].

As a consequence of the increasing availability of com-
putational resources and data, recent machine learn-
ing models perform well in prediction tasks, which is 
reflected in high accuracy scores and low classification 
errors. Estimating the uncertainty inherent in such a pre-
diction can provide a valuable source of information in 
various applications besides drug design [6–12]. In drug 
discovery, accurate uncertainty estimates can be lever-
aged to improve decisions about which candidates to 
pursue across a candidate portfolio.

The reliability of uncertainty estimates is crucial to 
guarantee the trustworthiness of machine learning mod-
els. This is particularly important for high-stakes deci-
sion processes like the drug discovery pipeline where 
experiments can be costly and poor decisions inevitably 
lead to an increase in required time and resources. Even 
when prediction accuracy is good, neural networks often 
fail to give realistic estimates of how uncertain they are 
about a prediction. These models are called poorly cali-
brated, which implies that the model’s confidence does 
not reflect the true probability of making a prediction 
error. In this context, confidence is defined as the degree 
to which the model thinks that the prediction is cor-
rect. In the case of binary classification, a prediction of 
0.5 implies minimum confidence, while the confidence 
increases with increasing shifts toward the extremes of 
the probability interval. An overconfident model is too 
confident in its predictions, which are skewed toward 
the extremes of the probability range. In contrast, under-
confident models generate probabilities that cluster too 
closely around 0.5, reflecting higher uncertainty. In gen-
eral, well-calibrated models refer to models whose proba-
bilistic predictions correspond to the true likelihood that 
an event occurs. For example, if a compound is predicted 
to be active with a 70% probability, then about 70% of 
the molecules given that prediction will be active if the 
model is well-calibrated. Under and overconfidence can 
be determined by calibration errors (CE) measuring the 
error between the probabilistic prediction of a classifier 
and the expected positive rate given the prediction.

Predictive uncertainty can come from various sources. 
While many different categorizations of these sources can 
be found in literature, a common one is the distinction 

between aleatoric and epistemic uncertainty [13, 14]. 
Aleatoric or data uncertainty is the uncertainty related 
to data and data acquisition, including systematic and 
unsystematic errors, such as measurement errors. Alea-
toric uncertainty is also often called irreducible uncer-
tainty, as it cannot be decreased by adding more data 
samples to the current model. In contrast, epistemic, or 
model uncertainty can be reduced by adding knowledge. 
Epistemic uncertainty can have several causes, including 
model overfitting or distribution shifts between training 
and test data.

In classification, the model output is usually a probabil-
ity-like score, reflecting the uncertainty of a prediction, 
if the network is well-calibrated. The predictive uncer-
tainty should summarize the total uncertainty associated 
with the prediction, considering all sources of uncer-
tainty. However, these probabilities have been reported 
to diverge from their ground truth preventing a reliable 
risk assessment [15, 16]. In 2017, Guo et  al. [15] drew 
attention to the inability of modern neural networks to 
estimate uncertainties of predictions correctly. They 
reported that despite their high accuracy, large neural 
networks are poorly calibrated, resulting in inaccurate 
probability estimates.

In their paper, Guo and his colleagues linked poor 
probability calibration to model overfitting, leading to 
increased probabilistic errors rather than affecting the 
model’s ability to correctly classify test instances. Fur-
thermore, they concluded that model calibration and 
model accuracy are also likely to be optimized by dif-
ferent hyperparameter (HP) settings [15]. While Guo 
et  al. [15] proposes that the growing size of modern 
neural networks contributes to poor probability calibra-
tion, Minderer et  al. [17] found that poor calibration is 
more related to the model family used (e.g. MLP, ResNet, 
CNN) than model size. Wang et al. [19] list three major 
factors diminishing the probability calibration of a model, 
including large model size and over-parametrization of 
models, lack of model regularization and data quality 
and quantity, as well as imbalanced label distribution in 
classification. In addition, the distribution of training and 
test data was reported to impact model calibration. Cur-
rent neural networks are often overconfident so probabil-
ity calibration deteriorates with increasing distribution 
shift [17, 20].

As many factors contributing to poor probability cali-
bration cannot be mitigated in real-world scenarios, 
it is crucial to identify methods capable of addressing 
these challenges and generating reliable uncertainty esti-
mates. This is particularly important in drug discovery 
when developing new therapeutic agents, which requires 
exploring the chemical space by shifting the focus during 
inference to chemical structures unknown to the model. 
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So far, there is no widespread agreement in the litera-
ture on which methods are most successful for achieving 
calibrated probabilities. Several papers exist that study 
the quality of uncertainty estimation in models used in 
various drug discovery applications. These include the 
application of various uncertainty estimation approaches, 
including evidential learning [21–23], distance-based 
methods[18, 24], Gaussian processes [23, 25], Bayesian 
and ensemble-based techniques [18, 23, 24, 26–29], and 
conformal predictors [30]. Furthermore, post hoc recali-
bration techniques have been assessed in classification 
[16] and regression tasks [31].

While all of these papers provide significant contri-
butions to identify approaches that obtain high-quality 
uncertainty estimates, there is, to our knowledge, no 
study investigating the impact of different HP optimiza-
tion metrics on the calibration properties of bioactiv-
ity prediction models. Our study aims to close this gap 
by contributing an analysis of how to train binary clas-
sification models when striving for good uncertainty esti-
mates. Furthermore, we evaluate and compare various 
uncertainty estimation approaches based on the qual-
ity of their uncertainty estimates. We propose a limited 
computational complexity Bayesian approach, which 
allows the retrieval of samples from the posterior distri-
bution of the last layer weights. While similar methods 
have been evaluated using variational approximation 
approaches in other fields [32–36], we use a Hamiltonian 
Monte Carlo  (HMC) approach for Bayesian approxima-
tion for drug-target interaction predictions. Furthermore, 
we compare this Bayesian approach to the uncalibrated 
baseline model, two common uncertainty quantification, 
and one probability calibration method. Finally, we inves-
tigate if combining the post hoc calibration approach 
Platt scaling with other uncertainty quantification meth-
ods benefits model calibration. In this work, the prob-
ability calibration of classification models is evaluated by 
assessing different metrics, including calibration errors 
and the Brier score, that quantify the quality of uncer-
tainty estimates. Detailed mathematical definition of cali-
bration error is provided in the Methods section and in 
the Appendix.

In conclusion, this paper focuses on exploring the 
effects of different model selection strategies and 
approaches for uncertainty estimation and probability 
calibration on the quality of uncertainty estimates using 
drug-target interaction modeling.

Related work and background
Post Hoc calibration methods
In this study, post hoc calibration methods refer to 
approaches that correct probabilities by using a cali-
bration dataset. This dataset is used to fit a calibrating 

function to the scores of a classifier after the training of 
the neural network has been completed. These methods 
do not provide uncertainty estimation of the parameters. 
However, they provide a first-order uncertainty estima-
tion of the binary prediction [37].

Platt scaling. Since 1999, Platt scaling [38] has been 
widely used for calibrating probabilities [15, 16, 19]. It is a 
parametric calibration method that fits a logistic regres-
sion model to the logits of the predictions of a classifier 
to counteract over- or underconfident model predictions. 
Usually, a separate dataset, called calibration dataset, is 
used for this calibration step. Since Platt scaling is a post 
hoc calibration method, it is versatile and can be used in 
combination with other uncertainty quantification tech-
niques, including Bayesian approaches.

Train‑time uncertainty quantification methods
In contrast to post hoc calibration methods, the uncer-
tainty quantification approaches discussed in this section 
estimate uncertainty during training. In our work, we 
define train-time uncertainty estimation approaches as 
methods that do not need a separate calibration set for 
correcting the predicted probabilities. The main idea of 
these techniques is to provide uncertainty of the model 
parameters by treating the model parameters as random 
variables with associated probability distributions. Bayes’ 
theorem allows access to these posterior distributions 
p(θ |D) over model parameters θ . Subsequently, a poste-
rior distribution of the predicted label corresponding to 
the test instance x can be derived by marginalizing over θ:

The Bayesian paradigm is used by Bayesian neural net-
works, which obtain probability distributions for the 
network parameters. Since they consider many possi-
ble model solutions, they account for uncertainty in the 
model during inference. However, the model posterior 
distributions are usually complex, and their analytical 
form is often not available because of intractable marginal 
likelihood terms needed for exact Bayesian inference. The 
majority of the uncertainty quantification approaches are 
Bayesian or apply heuristics motivated by Bayesian sta-
tistical principles. These include various sampling-based 
approaches that draw samples θi ∼ p(θ |D) from this 
complex posterior distribution. An uncertainty estimate 
for a test instance can be obtained by averaging over the 
samples p(y|x,D) ≈ 1

M

∑M
m=0 p(y|x, θm) . The following 

sections provide a short introduction to the uncertainty 
quantification methods used in this study. In addition, an 
overview of the approaches is also provided in Fig. 3.

(1)p(y|x,D) =

∫

θ

p(y|x, θ)p(θ |D) dθ .
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Monte Carlo dropout. In the context of training 
Bayesian neural networks, Monte Carlo (MC) drop-
out can be regarded as an approximation to Bayes-
ian inference [39]. In MC dropout, parameter samples 
are retrieved by passing the input data through the 
neural network multiple times. Stochasticity is intro-
duced by applying dropout during inference. During 
each forward pass through the neural network, a new 
set of randomly selected neurons is set to zero. The 
mathematical details on forward passes through neu-
ral networks is described in Section F.1. This approach 
resembles the application of dropout during model 
training [40]. Subsequently, the samples are averaged 
to obtain an uncertainty estimate for a test instance, as 
described earlier in this section. Since for MC dropout 
the training of only one model is necessary, this calibra-
tion method is efficient in terms of computational cost 
and time, as shown in Section D in the Appendix. Due 
to its simplicity and efficiency, MC dropout has been 
extensively studied for uncertainty quantification in 
cheminformatics applications [24, 29, 41].

Deep ensembles. Another approach that has been 
shown to produce high-quality probability estimates is 
the generation of deep ensembles [29, 42]. Deep ensem-
bles have also demonstrated greater robustness to data 
shifts compared to other widely used uncertainty quanti-
fication methods [20].

For uncertainty quantification with deep ensembles, 
multiple base estimators are trained, starting from dif-
ferent weight initializations of the network. To retrieve 
a single probability estimate, the predictions of the dif-
ferent base estimators are averaged, as described at the 
beginning of Section  1.1.2. It is assumed that because 
of the strong non-convex nature of the error landscape, 
most of these models reach different local minima, as 
reported by Fort et al. [43]. It is, therefore, expected that 
such sets of base estimators represent the most impor-
tant regions of the posterior.

Deep ensembles are easy to implement. They can how-
ever be computationally expensive as they involve the 
generation of multiple models. A comparison of the the 
different training and evaluation times of the models is 
listed in Section D.

HMC Bayesian last layer. Partial Bayesian neural net-
works, which apply Bayesian approximation solely to the 
final layer of a neural network, have already been intro-
duced in the literature [32–36]. Harrison et  al. recently 
showed that variational Bayesian last layer (BLL) models 
enhance the calibration and accuracy of baseline models 
in classification and regression tasks [44]. Note that all of 
these works use variational approximation approaches 
while we apply HMC to retrieve samples from the poste-
rior of the last layer weights.

Hamiltonian Monte Carlo (HMC) is a Markov Chain 
Monte Carlo (MCMC) method, which allows drawing 
samples directly from the posterior distribution of the 
parameters [45]. MCMC methods generate samples by 
constructing a Markov chain in which the proposal distri-
bution of the next sample depends on the current sample. 
When comparing it to other MCMC methods that use a 
random walk approach, HMC stands out because of its 
ability to propose new samples in an informed way. The 
HMC sampler uses Hamiltonian dynamics to efficiently 
move through the negative log space of the unnormalized 
posterior by following Hamiltonian trajectories. Simply 
put, the sampling procedure can be intuitively imag-
ined as a particle sliding along the space. This particle is 
stopped after some time to record the current state as a 
sample of the Markov Chain. The particle moves along 
specific trajectories obtained by numerically solving 
Hamilton’s equation. To account for accumulated error, 
an additional Metropolis-Hastings step is required after 
drawing the sample, in which erroneous samples can be 
rejected. For a more detailed explanation of the mathe-
matical and physical details of HMC we refer to [45, 46].

Because its informed approach to proposing new sam-
ples, HMC is generally better at generating well-mixing 
chains than methods using random walk techniques. Fur-
thermore, the mixing ability of the chain will depend on 
the length of the trajectory determined by the number of 
steps L and the stepsize ǫ . If a chain is mixing poorly, the 
chain will get stuck in one area of the negative log prob-
ability space, resulting in highly correlated samples. If 
this is the case, the trajectory can be lengthened by either 
increasing ǫ or L. However, these HPs need to be tuned 
carefully, since high ǫ can lead to increased rejection of 
the proposed samples because of larger accumulated 
error, and the increase of L is often connected to prob-
lematic computational costs. Furthermore, tuning the 
mass matrix M can support the generation of efficient 
HMC samplers by de-correlating the parameter space.

Because of its high computational demand, the appli-
cation of HMC to a full Bayesian neural network is chal-
lenging. In 2021, Izmailov et  al. [47] generated truly 
Bayesian neural networks by training modern archi-
tectures using full-batch HMC. Despite giving highly 
interesting insights into the nature of Bayesian neural 
networks, the authors concluded that HMC is an imprac-
tical method because of the high computational demand. 
In our work, we propose to use HMC in a computation-
ally feasible way by sampling only from the weight pos-
terior of the last layer of the neural networks. Consistent 
with the terminology used in the existing literature [32, 
33, 36, 44], we refer to the method as HMC Bayesian Last 
Layer (HBLL). The algorithm of HBLL is reported in Sec-
tion G.
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Methods
Datasets
Extraction of target specific data from ChEMBL. Target-
specific bioactivity data was extracted from the ChEMBL 
database (version: 29) [48]. To generate single-task mod-
els, compound activities from three different targets, 
namely Monoamine oxidase A (MAO-A), Cytochrome 
P450 3A4 (CYP3A4), and hERG, were extracted. The 
targets were chosen to represent common optimization 
problems in the drug discovery process. CYP3A4 plays 
an important role in drug-drug interactions and the 
metabolization of compounds [49, 50]. Furthermore, the 
inhibition of hERG can lead to severe cardiac side effects 
[51]. Hence, detecting interactions with these proteins 
is essential to evaluate the pharmacokinetic and toxicity 
profile of drug candidates. MAO-A, on the other hand, 
was chosen as representative for a class of targets that 
are typically modulated to achieve a desired biochemi-
cal effect. MAO-A is modulated by therapeutic agents 
treating behavioral and neurological disorders. Table  1 
summarizes the properties of the used target data. Bio-
activities were converted to pIC50, and thresholds for 
assigning bioactivity labels were chosen for each tar-
get, respectively. For MAO-A and CYP3A4, a pIC50 
value of 5.5 was chosen as threshold, which resulted in 
active ratios of approximately 25% for both targets. To 

investigate if our conclusions were also valid for smaller 
active ratios, we chose a stricter threshold of 6.5 pIC50 
for the remaining target hERG leading to an active ratio 
of 7% in this dataset. Extended connectivity fingerprints 
(ECFPs) (size = 32k, radius = 3), were obtained using 
RDKit Version 2022.03.2[52] which were used as model 
inputs. More advanced methods are available for molecu-
lar representations and model architectures, including 
graph neural networks for handling molecular graphs 
and language models for processing SMILES representa-
tions. However, since the aim of this method is to identify 
modeling approaches that produce high-quality uncer-
tainty estimates rather than find the overall best model, 
we chose the simple ECFP representation. Furthermore, 
the combination of ECFP with multilayer perceptions, as 
used in this study, has been shown to outperform other 
deep learning approaches [53].

Fold generation via clustering. The data was split into 
five different folds to enable cross-validation. In cross-
validation, data is excluded from the training process, 
which is used to validate and evaluate the model after 
training. This allows the assessment of the model’s gener-
alizing abilities by evaluating its performance on unseen 
data. In our study, we used three folds for model training, 
one for validation, and one for testing. Fig.  1 illustrates 
the generation and use of the dataset splits. The valida-
tion fold used for the model’s quality assessment during 
HP tuning and for early stopping was excluded from the 
training dataset. To obtain the folds, we used the proce-
dure of fold generation described in detail in Simm et al. 
[54]. In short, Tanimoto similarity computed on the 
above-described ECFP features is used to measure the 
chemical similarity of the compound, which is then used 
to assign the compounds to clusters. Next, the entire 
clusters containing similar compounds were randomly 
assigned to folds. This procedure ensures that train-
ing and test datasets consist of compounds from diver-
gent chemical space, mimicking the real-world scenario, 
in which the model is used to predict bioactivities for 

Table 1  Assay data used in this study. Details for the assay data 
extracted from the ChEMBL dataset are reported. Data from three 
assays of varying sizes and positive ratios were extracted

ChEMBL - IDs Target #Results Active Ratio pIC50 
Threshold

CHEMBL340 Cytochrome P450 
3A4

7619 0.252658 5.5

CHEMBL1951 Monoamine 
oxidase A

2917 0.259170 5.5

CHEMBL240 hERG 9558 0.079828 6.5

Fig. 1  Overview of the dataset generation. The chemical structures were extracted from ChEMBL, and subsequently filtered and clustered. The 
clusters were assigned to five folds, which were used to set up a training, validation, and test fold. The training folds were used for MLP training. 
The validation set was used for HP tuning, as well as for fitting the logistic regression models for the Platt-scaled models, and to choose the prior 
for HMC Bayesian last layer model (HBLL), respectively
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chemically unfamiliar compounds. Testing the model on 
compounds to those on which it was trained would result 
in overoptimistic results during model performance 
assessment.

Single‑Task model generation
Model architecture. In this study, we adopt the modeling 
framework SparseChem, proposed by Arany et  al. [55] 
which has been used by multiple industry stakehold-
ers [56]. Single-task feed-forward multilayer percep-
trons (MLP) were generated and used as the baseline 
for binary classification tasks. The mathematical back-
ground for training and predicting with MLPs is outlined 
in Section F in the Appendix. Subsequently, the baseline 
models were extended to compare different uncertainty 
estimation and probability calibration approaches. Fig-
ure 2 illustrates the architecture of the baseline MLPs and 
the HP optimization workflow. The baseline MLP is com-
prised of two layers, with a ReLU function and a dropout 
layer in between. Probability-like scores were obtained 
by applying a sigmoid function. The size of the hidden 
layer and the dropout rate were tuned in a grid search 
as described in the next section. Deeper MLPs with 2 
to 4 additional layers were tested to evaluate whether 
they could enhance the performance. The results of this 
experiment show no significant improvements in using 
deeper MLPs, as shown in Section B.1 in the Appen-
dix. With regard to the HBLL model, the performance 
of HMC samplers in the last layer should be compara-
ble independently of the depth of the network. Sommer 
et  al. [57] demonstrated that the mixing of HMC sam-
plers improved in deeper layers of the network, while it 
was harder in the first and last [57]. Considering these 
findings, we opted for the shallow MLP structure, as 
described above. Models were implemented and trained 
using PyTorch Version 2.1.0 [58]. The open-source 

hamiltorch package [59] was used to generate the HMC 
Bayesian last layer (HBLL) models using a HMC sampler 
[60].

Model tuning. The baseline models were trained using 
the binary cross-entropy (BCE) loss. A validation dataset 
was used for early stopping during training and to opti-
mize the HPs of the models. An exhaustive grid search 
in parameter space was performed to tune the size of the 
hidden layer, and the dropout rate of the model, as well as 
the learning rate and the weight decay used during model 
training as shown in Fig. 2. The space that was considered 
during HP tuning is reported in Table 8 in the Appendix. 
For each HP  setting, the HP metric was averaged over 
ten model repeats, which were initialized randomly, to 
ensure repeatability. Binary cross entropy loss (BCE loss), 
adaptive calibration error (ACE), accuracy  (ACC), and 
area under the ROC Curve (AUC) were used for model 
selection to assess the impact on probability calibration.

Model evaluation. All models included in our work 
predict scores between 0 and 1, indicating the probability 
that a compound is active on the respective target. Note 
that while the train-time uncertainty methods considered 
in this work account for epistemic uncertainty in their 
estimates, the baseline MLP and Platt scaling approach 
also provide probability-like scores. By incorporating 
uncertainty in the model parameters, we access an addi-
tional layer of uncertainty in the prediction, which can be 
referred to as second-order estimation. This type of esti-
mation quantifies uncertainty over the parameter of the 
Bernoulli distribution corresponding to the probabilistic 
prediction [37]. In contrast, the baseline MLP and Platt 
scaling methods can be seen as first-order uncertainty 
estimation approaches.

All performance metrics were calculated from predic-
tions on a test dataset for each model and HP tuning strat-
egy or probability calibration method. AUC ( ↑ ) scores were 

Fig. 2  Overview of the architecture of the MLP baseline model and the HP tuning workflow. The size of the hidden layer and the dropout rate, 
as well as the weight decay and learning rate used during training, were tuned in a grid search using a validation dataset. Four different HP 
optimization metrics (HP metrics) were used, and the performances of the respective models were compared in a model selection study
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obtained to assess the model’s ability to correctly classify 
samples. In addition, we assessed whether the generated 
models were capable of producing calibrated probability 
predictions. We used the BCE loss ( ↓ ), the Brier score (BS) 
( ↓ ), and two types of calibration errors (CEs) ( ↓ ) to measure 
the probability calibration of the models.

In the context of probability calibration, it is important 
to distinguish between proper and improper scores. While 
a good proper score implies an overall good model, this is 
not necessarily the case with improper scores. Using the 
properties of Bregman divergence, proper scores can be 
decomposed into two parts: one related to calibration error 
and one related to the predictive performance of the model. 
The exact definition of proper scores and the mathemati-
cal details of the decomposition can be found in Section E 
in the Appendix. Proper scores include the BCE loss and 
the Brier score. The Brier score (BS) [61] measures the per-
formance of a model by obtaining the mean squared error 
between the predicted probabilities f(x) and the true labels 
y:

As stated above, the BS can be decomposed into a cali-
bration and refinement term. The decomposition of the 
Brier score is demonstrated in Section E.3 in the Appen-
dix. Similar decompositions can be performed for other 
proper scores, like the BCE loss [62, 63].

In contrast, CEs are improper scores that do not con-
sider the refinement but measure only the calibration error 
instead. The most frequently used calibration error is the 
L1 distance between the predictions f(x) and the expected 
outcomes given the predictions E[y|f (x)]

where E[y|f (x)] denotes the accuracy (acc) and f(x) the 
confidence (conf) of the predictions. On an intuitive level, 
the accuracy represents the expected fraction of posi-
tives given the prediction. Since this expectation cannot 
be calculated, a binning strategy is needed, which allows 
the expectation to be taken over the predictions assigned 
to a bin. Both CE types considered in this study estimate 
the true calibration error by discretizing the probability 
interval of the predictions into bins b = {1, 2, ..,B} and 
taking a weighted average of the errors over all bins [64, 
65]. Thus, the calibration error is calculated as following

in which nb stands for the number of instances in bin 
b, N for the total number of predictions, acc(b) for the 

(2)BS =
1

N

N∑

n=1

(f (x)− y)2.

(3)CE = E[|E[y|f (x)] − f (x)|]

(4)CE =
1

N

B∑

b=1

nb
∣
∣acc(b)− conf (b)

∣
∣.

accuracy and conf(b) for the confidence in bin b. The 
expected calibration error (ECE) is commonly used in lit-
erature to assess if a model is calibrated. In addition, we 
also used the adaptive calibration error (ACE), which has 
some desirable properties making it more robust towards 
skewed distributions of the predictions, as described 
below. The ECE and ACE differ only in the way in which 
the bins are formed. While for the ECE the probabil-
ity interval is divided into equally-spaced bins of a fixed 
width, the ACE forms bins with the same number of sam-
ples in each bin [65]. In general, the ACE is considered 
more robust since the constant bin size prevents samples 
from contributing more to the error than others. In con-
trast, this behavior can be detected in the ECE as a result 
of the fixed binning leading to differently populated bins 
and an increased variance of the error estimate in bins 
with fewer samples.

It is important to highlight that because these CEs 
are improper scoring rules [66], predictions with zero 
calibration error are not necessarily good predictions. 
A model that always predicts the overall ratio of class 
instances in the dataset will be perfectly calibrated, 
despite its poor accuracy. Nevertheless, these scores are 
useful in assessing and comparing the probability calibra-
tion of models, which aligns with the goals of our paper. 
Consequently, we will employ these scores alongside 
proper scoring rules to evaluate both the calibration and 
overall performance of the models.

Experiments
For the sake of repeatability and estimation of the stand-
ard deviation of the predictions, we generated ten model 
repeats with random seeds for each model type and aver-
aged the resulting repeats. Note that for computational 
reasons, only five repeats were generated for ensemble 
models, resulting in 250 training sessions per target. The 
statistical significance of the best results was tested in 
each experiment by performing a two-sided t-test with 
a threshold of p = 0.05. Paired t-tests were used when 
comparing the baseline model with modifications of this 
specific model or between these modifications, including 
MLP plus Platt scaling (MLP + P), MC dropout (MLP-
D), HMC Bayesian last layer (HBLL) and HBLL plus Platt 
scaling (HBLL + P). In all other cases, an unpaired t-test 
was used.

Model selection study. Since it is assumed that model 
overfitting affects probability calibration, we assessed the 
impact of different HP optimization metrics (HP metrics) 
on model calibration. To do so, we compared the calibra-
tion errors of models with HPs either maximizing accu-
racy (ACC) or the AUC value or minimizing the BCE loss 
or the ACE. We assessed how the AUC, the CEs, and the 
BS were affected by varying HP metrics. Furthermore, 
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we compared if the results of this analysis vary across 
targets.

Model calibration study. We studied the ability of three 
uncertainty estimation techniques and one post hoc cali-
bration approach to generate predictions with smaller 
calibration errors than the baseline, indicating better 
uncertainty estimates. Fig.  3 gives an overview of the 
methods assessed in this experiment.

In all cases, we build on an uncalibrated multilayer 
perception baseline model, which we refer to as MLP or 
baseline model in this paper. For the post hoc calibration 
method, Platt scaling, the validation dataset was used to 
fit a logistic regression to the generated scores. In the 
following sections, we will refer to this model as MLP 
+ P. Moreover, we assessed two uncertainty estimation 
approaches: ensemble models (MLP-E) and MC drop-
out (MLP-D). For the generation of MLP-E models, 50 
base estimators were trained with random initialization, 
whereas for the MLP-D approach, 100 predictions were 
generated using dropout during the forward passes. In 
both approaches, the predictions were averaged to obtain 
a prediction for a test instance. Finally, we used our pro-
posed method HMC Bayesian Last Layer (HBLL), by 
removing the last layer of the baseline MLP and replacing 
it by a Bayesian logistic regression model.

The parameters for the logistic regression model 
were sampled from their true posterior distribution 
using HMC. To generate the HBLL models, a vanilla 
HMC approach with one sampling chain was cho-
sen with 500 burn-in and 1000 samples. The trajec-
tory length and integration timestep was chosen based 

on preliminary runs and fixed to L = 1200 , ǫ = 0.01 . 
No additional adaptation method, such as NUTS, was 
used. The inverse mass matrix was set to the Hessian 
corresponding to the Maximum A Posteriori (MAP) 
parameter estimate of the logistic regression model. 
Note that similarly to MLP-E and MLP-D the train-
ing of the HBLL model is carried out on the training 
set and does not use a calibration set. The validation set 
was used to tune the precision of the Gaussian prior of 
the model parameters. The parameter space considered 
during tuning the precision is reported in Table 9 in the 
Appendix. The selection of this single scalar parameter 
has an analogous effect as regularization and positions 
the method between the two main types of methods 
discussed so far. Again, CEs, BS, and AUC scores were 
used to compare the performance across model archi-
tectures and targets.

As a second step, post hoc calibration and uncer-
tainty quantification methods were combined to assess 
whether the model’s probability calibration would ben-
efit from first quantifying the uncertainty inherent in 
the predictions and subsequently calibrating the uncer-
tainty estimates. The architecture of the combined 
models is illustrated in Fig. 4. We applied Platt scaling 
to the MLP-E and HBLL model, by fitting a sigmoid 
function to the logit scores of the predictions, which 
resulted in the Platt-scaled uncertainty quantification 
models MLP-E + P and HBLL + P. Since Platt scaling 
does not affect the AUC scores of the predictions, only 
CEs and BS were calculated to compare the models’ 
performance with their platt-scaled counterparts.

Fig. 3  Overview of model architectures assessed in the model calibration study. The baseline model (MLP) was compared to the post hoc 
calibration method Platt scaling (MLP + P) and the Bayesian approaches MC dropout (MLP-D) and deep ensembles (MLP-E). Furthermore, 
the proposed Bayesian approach HMC Bayesian last layer (HBLL) was included in the analysis. The models were trained on the training dataset. 
For the post hoc calibration approach, the validation dataset was used to fit the logistic regression model
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Results and discussion
Reliable uncertainty estimates are crucial for assess-
ing the costs and benefits of experiments in the drug 
discovery process. They can support the identification 
of compounds that are more likely to be active against 
a target of interest and on which further experimental 
analysis should be focused. In the following sections, 
we evaluate several HP tuning strategies to assess their 
ability to produce calibrated models. Furthermore, we 

compare different performance metrics, such as the CEs, 
to assess the ability of various probability calibration and 
uncertainty estimation approaches to generate high-qual-
ity uncertainty estimates. These experiments will iden-
tify practices that can generate well-calibrated machine 
learning models.

Model selection study
We investigated the calibration of baseline models with 
four different HP settings, each of which was selected to 
optimize ACC, AUC, BCE loss, and ACE.

Calibration of model selection strategies across targets. 
Fig. 5 illustrates the results of the model selection study 
across all targets and HP metrics. The numerical results 
can be found in Section A. Figure  5 shows comparable 
patterns in the ECE and ACE results across targets and 
HP metrics, allowing us to analyze them collectively 
as CEs throughout this section. Note that the ACE was 
slightly smaller than the ECE for all models, as detected 
in the numerical results in Section A in the Appendix. A 
reason for this observation could be the high variance of 
the mean predictions in less populated bins, contributing 
considerably more to the ECE than other bins and lead-
ing to an overestimation of the CE. In summary, models 
tuned using the BCE loss, and ACE performed better in 
terms of CE than those tuned on the ACC or AUC values. 
More specifically, the test set performance of the individ-
ual models on the CYP3A4 dataset shows that the model 
optimizing the ACE and BCE on a validation set results 
in the best CEs, as illustrated in the first row of Fig. 5. In 

Fig. 4  Architecture of the uncertainty estimation approaches 
combined with Platt scaling. The architectures of MLP-E + P and HBLL 
+ P are shown. For generating Platt-scaled uncertainty quantification 
methods, a sigmoid was fit to the logits of the deep ensemble 
(MLP-E) and HMC Bayesian last layer (HBLL) model. The validation 
dataset was used as calibration set

Fig. 5  Results of the model selection study for all targets. The performance of the models is evaluated on the test set. CEs (upper row), as well 
as BSs and AUC values (bottom row), are shown across targets for all HP tuning strategies. Results are averaged over ten model repetitions, 
except for the deep ensemble models, for which five model repeats were computed. For each performance metric and target, an asterisk marks 
the best model and any those that are statistically indistinguishable from it. Statistical significance was determined in a t-test ( p < 0.05)
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contrast, optimization based on AUC values leads to the 
highest CEs. The overall trends detected in the analysis 
of the CYP3A4 dataset could be also observed with the 
other two targets. In general, optimizing the HPs with 
regard to BCE loss or ACE resulted in models that exhib-
ited smaller CEs than optimization based on ACC or 
AUC. In more detail, HP optimization using the ACE was 
favorable for the MAO-A dataset, while for the hERG 
dataset, optimization with the BCE loss led to the signifi-
cantly smallest CEs.

Since both CEs are improper scores and can give good 
results for inaccurate models, it is advisable to also con-
sider proper scores when analyzing model calibration. 
The bottom row of Fig.  5 shows the results of different 
HP metrics across the three datasets in terms of the 
proper score BS and the AUC. The BS summarizes the 
performance of both the calibration of the model and 
its ability to rank predictions correctly, while the AUC 
scores solely measure the ranking abilities of the models. 
Again, the models optimized based on BCE loss and ACE 
yielded the best BS and AUC values. For targets CYP3A4 
and hERG, choosing the BCE loss as HP metric lead to 
the significantly best BS and AUC scores. Model trained 
on the MAO-A target, on the other hand, achieved the 
best BS and AUC results when optimizing for ACE.

Therefore, the BSs and the AUC values confirm the 
outcomes obtained in the CE analysis, favoring HP selec-
tion strategies based on BCE loss or ACE rather than 
ACC or AUC. This observation could be explained by 
reduced model overfitting when choosing ACE or BCE 
loss as HP metric. This assumption is supported by the 
results of an additional experiment, which investigated 
the model performance on the training set compared to 
the test set to demonstrate the overfitting behavior of 
the models. The study results are displayed in Section 
B.2 in the Appendix. The experiment showed that the 
models with HPs optimizing the AUC or the ACC per-
form best on the training set in terms of AUC, BS, and 

ACE across all targets. However, when looking at the test 
performance, the models with HPs optimizing BCE and 
ACE obtained the best results. The good performance on 
the training set and comparatively poorer results on the 
test set imply a more pronounced overfitting of the mod-
els with HPs optimizing the ACC or AUC. The reduced 
overfitting of models tuned using the BCE loss or ACE 
could be the result of the regularizing effect of the cali-
bration term which contributes to these scores, as shown 
in Appendix E.

Since ACC and AUC scores do not account for prob-
ability calibration, models tuned to optimize these 
scores on the validation datasets perform worse on the 
test set.

ACE vs AUC across model selection strategies. Fig.  6 
illustrates the performance of the models selection 
strategies in terms of AUC versus AUC scores. This 
allows for identifying the most suitable HP metric for 
each situation, enabling the user to select a model that 
delivers optimal test performance for a specific aspect 
(calibration, ranking abilities, or any custom-weighted 
combination thereof ). Not that, while there is, in general, 
a trade-off between calibration and AUC, there is a clear 
Pareto dominance observed for MAO-A and hERG. Fig-
ure 6 shows that ACE as a metric clearly dominates every 
other HP metric in the case of the target MAO-A, while 
for hERG using the BCE loss leads to the best-performing 
model. In the case of CYP3A4, a slight trade-off can be 
detected since the BCE loss is better in terms of AUC and 
ACE in terms of ACE. However, the differences in ACE 
between the model tuned with these two HP metrics are 
not statistically significant.

These results identify BCE loss as the best choice for 
HP optimization with regard to BCE loss or AUC. Sur-
prisingly, models tuned to optimize AUC value on a vali-
dation dataset also showed worse AUC performance on 
the test set with HPs optimizing BCE loss or ACE. This 
observation could result from increased overfitting of the 

Fig. 6  ACE vs AUC across model selection strategies. The ACE of models trained using different HP metrics is plotted against their AUC scores 
for each target. The performance of the models is evaluated on the test set. Points represent the average values, and error bars indicate the standard 
deviation based on 10 model repetitions
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models tuned with metrics that do not consider the cali-
bration error, as reported in the previous section. Due to 
these results, we will focus on models with HPs that min-
imize BCE loss in the subsequent sections of this paper. 
Furthermore, these models achieved the best BS in two 
targets and the second-best BS for the MAO-A dataset.

Model calibration study
We compared two popular uncertainty estimation meth-
ods and one common probability calibration approach, 
including the post hoc method Platt scaling and the train-
time uncertainty estimation techniques deep ensem-
bles, MC dropout and HBLL. For the sake of a clear and 
straightforward comparison, we only considered models 
with HPs selected to minimize the BCE loss in this prob-
ability calibration study. The results of models optimizing 
other HP metrics are listed in Section A in the Appendix.

Calibration of model architectures across targets. 
Fig.  7 depicts the performance for every target across 
the model architectures. The MLP-D models performed 
much worse than the other architectures, and for the 
sake of a clearer comparison, these results are excluded 
from Fig. 7. The numerical results of all models, including 
MLP-D, can be accessed in Section A in the Appendix.

Both calibration errors considered in this study lead 
to similar results regarding the performance of differ-
ent model architectures. Besides MC dropout (MLP-D), 
all models achieve lower CEs than the baseline model 
for CYP3A4 and MAO-A. However, only MLP + P and 
HBLL achieve a statistically significant improvement. For 
hERG, only HBLL significantly improved the calibration 
errors compared to the baseline MLP. Similar to the CEs 

results, the analysis of the proper score BS showed that 
MLP + P and HBLL significantly outperformed other 
approaches for CYP3A4 and MAO-A. For hERG, no sig-
nificant difference could be determined between base-
line MLP, MLP-E and HBLL. Interestingly, these three 
approaches outperformed MLP-E in terms of BS. The 
analysis of the AUC scores showed only minor differ-
ences below 0.03 between the model architectures across 
all targets, which were not statistically significant in the 
majority of cases.

The results of the models using other HP metrics also 
support the conclusion that all included methods retrieve 
similar AUC values, as shown in Section A in the Appen-
dix. An exception to this is MLP-D, which performed 
poorly in some cases. Based on these results, we can con-
clude that the analyzed methods improve the probability 
calibration by decreasing the CEs compared to the base-
line model while having a limited impact on the accuracy 
of the ranking abilities. In this context, interesting find-
ings were reported by Roth and Bajorath, who investi-
gated the relationship between accuracy and calibration 
in a variety of classification models [67]. Similar to our 
conclusions, the authors reported that despite their large 
differences in the calibrating performance, the models 
overall produced stable and accurate predictions.

In conclusion, Platt scaling (MLP + P) and HMC 
Bayesian last layer (HBLL) are most powerful in terms 
of probability calibration as shown in Fig. 7, with the lat-
ter resulting in the best calibration error for the MAO-A 
dataset and hERG. For the hERG dataset, HBLL per-
formed significantly better than all other approaches. 
HBLL consistently outperformed all other train-time 

Fig. 7  Results of the model calibration study for all targets. The performance of the models is evaluated on the test set. CEs (upper row), as well 
as BSs and AUC values (bottom row), are shown across targets for all model architectures. Results are averaged over ten model repetitions, 
except for the deep ensemble models, for which five model repeats were computed. For each performance metric and target, an asterisk marks 
the best model and any those that are statistically indistinguishable from it. Statistical significance was determined in a t-test ( p < 0.05)
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uncertainty estimation approaches across all perfor-
mance metrics, except for AUC, where the ensemble 
model (MLP-E) achieved the best results in two targets. 
These results show that HBLL reaches the CE perfor-
mance of state-of-the-art uncertainty quantification and 
probability calibration methods and is only outperformed 
in one dataset by Platt scaling. Furthermore, common 
train-time uncertainty quantification methods, such as 
deep ensembles or MC dropout, do not reach the perfor-
mance of HBLL or Platt scaling in terms of CEs and BS. 
A possible explanation for this might be that the rather 
simple MLP architecture leads to a less complex loss 
landscape and fewer local minima resulting in similar 
base estimators of the ensemble model. Small neural net-
works with fewer neurons and fewer layers have compa-
rably fewer parameters. With parameter count D, the loss 
landscape forms a D dimensional hypersurface, which 
becomes more complex and has more local minima as D 
increases. Furthermore, deep ensembles and MC Drop-
out were reported to lead to less confident predictions, 
resulting in more uncertain predictions shifted towards 
0.5 [68]. Therefore, these methods do not necessarily 
improve probability calibration. As a consequence, we 
hypothesize that ensembling techniques are only ben-
eficial if the base estimators are overconfident, and the 
predictions are pushed towards 0 or 1. However, they are 
ineffective for underconfident or well-calibrated models 
and can even impair the quality of the uncertainty esti-
mates. Over-parametrization of models has been iden-
tified as one of the factors contributing to poor model 
calibration [19]. Given that the models used in this study 
were rather shallow and their calibration properties were 
prioritized during  HP tuning, including the size of the 
hidden layer, the resulting base estimators might not 
suffer from overconfidence in the same severity as it is 
known for larger deep neural networks.

ACE vs AUC across model architectures. We compared 
the AUC and ACE of considered model architectures to 

determine which model is the best choice with regard 
to different evaluation metrics and to identify poten-
tial trade-offs between these metrics. Figure 8 illustrates 
AUC values plotted against ACE for all model architec-
tures. Again, the MLP-D models were excluded from 
the plot due to their bad performance. The results for 
hERG reveal a trade-off between ACE and AUC values 
across the model architectures. In the plot, the results of 
the individual models form a Pareto front, with MLP-E 
performing best in terms of AUC and HBLL in terms of 
ACE. In this case, it is up to the model user to prioritize 
either model calibration or ranking abilities to determine 
a suitable model. The results for the other two models 
were more noisy, and their pattern was not as clear. For 
CYP3A4, different models performed best with regard 
to different evaluation metrics. While MLP + P was 
best in terms of ACE, MLP-E resulted in the best AUC 
scores. The analysis of the MAO-A models showed that 
one single model, namely HBLL, outperformed all others 
in terms of both metrics (Pareto dominant). However, it 
is important to note that the AUC differences between 
many models are not statistically significant, as men-
tioned in the previous section.

Post hoc calibration of uncertainty quantification 
methods. Platt scaling is a post hoc calibration method, 
which makes it versatile as it can be applied to any model 
after training. We combined Platt scaling with MLP-E 
and HBLL to assess if calibrating uncertainty estimates 
obtained from ensemble modeling or HMC Bayesian last 
layer enhances model calibration. The results for MLP-E 
+ P and HBLL + P are shown in Fig. 9. Since Platt scal-
ing does not change the ranking of the predictions, the 
AUC is excluded from this analysis. Furthermore, since 
the ECE and ACE resulted in similar results in the previ-
ous sections, we only report the ACE in Fig. 9 to evalu-
ate the probability calibration of the models. In general, 
the Platt-scaled models MLP + P, MLP-E + P and HBLL 
+ P outperformed all train-time approaches across all 

Fig. 8  ACE vs AUC across model architectures. The ACE scores of different model architectures are plotted against their AUC scores for each target. 
The performance of the models is evaluated on the test set. Points represent the average values, and error bars indicate the standard deviation 
based on 10 model repetitions
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targets. The only model that matched the performance 
of the Platt-scaled approaches was the HBLL model, 
which was only significantly outperformed by its Platt-
scaled counterpart in terms of ACEs on the MAO-A 
dataset. The combined methods were reported to sig-
nificantly improve calibration only in one of the three 
assays (MAO-A). In this case, the modified HMC Bayes-
ian last layer model HBLL + P achieved the lowest CEs 
while all other models performed significantly worse. In 
addition, HBLL + P also generated the smallest BS, with 
no significant difference to the other Platt-scaled models 
MLP + P, MLP-E + P and the train-time uncertainty esti-
mation approach HBLL. The results for target CYP3A4 
show that, again, all Platt-scaled models performed best, 
with MLP-E + P resulting in the lowest CEs and BS. The 
only exception was the HBLL model, which consistently 
matched the performance of the calibrated models for 
CYP3A4. The HBLL model also resulted in the best per-
formance of the hERG model, significantly outperform-
ing Platt-scaled models in terms of CEs.

Interestingly, Platt scaling of the ensemble model led 
to improved CEs across all targets, while the difference 
between the HBLL and HBLL + P models was much 
smaller. In some cases, Platt scaling of the HBLL models 
did not lead to any improvements at all. A possible expla-
nation for this difference between the two uncertainty 
quantification methods could be that tuning the single 
HP needed for HBLL model generation already has a 
calibrating effect. Hence, HBLL models are already well-
calibrated and do not need an additional calibration step. 
As reported in previous sections of this paper, ensem-
bling failed to produce predictions with lower CEs than 
the baseline in most cases. However, the CEs improved 
after applying the Platt scaling step.

Conclusion
In this paper, we provided a systematic study that com-
pared various model selection strategies as well as uncer-
tainty estimation and probability calibration strategies, to 
achieve well-calibrated models using bioactivity data of 
three targets extracted from the ChEMBL database [48]. 
First, we reported that the selection of the metric used 
for HP tuning substantially affects model performance. 
We observed that using metrics that took into account 
the probability calibration of the model, not only resulted 
in smaller calibration errors but also in improved AUC 
scores. Second, we compared the baseline model to the 
common probability calibration method Platt scaling, as 
well as the train-time uncertainty quantification tech-
niques deep ensembles and MC dropout. In addition, we 
investigated the calibration performance of the baseline 
model combined with a Bayesian logistic regression tak-
ing as input the output of the penultimate layer, which we 
called HMC Bayesian last layer (HBLL). A Hamiltonian 
Monte Carlo  (HMC) sampler was used to retrieve sam-
ples from the parameter posterior. The results showed 
that HBLL was the only train-time uncertainty quanti-
fication approach that successfully improved the prob-
ability calibration over the baseline and could match 
or outperform other, common uncertainty estimation 
approaches. Furthermore, the HBLL approach is a good 
compromise because of its reduced computational com-
plexity compared to the full Bayesian treatment of the 
weights. Surprisingly, other train-time uncertainty quan-
tification methods failed to produce predictions with 
smaller calibration errors than the baseline, which might 
be a result of the previously reported inability of these 
approaches to calibrate non-overconfident models [68]. 
In the last step of our analysis, we examined whether 
applying a post hoc calibrator to different uncertainty 

Fig. 9  Results of post hoc-calibrated uncertainty quantification methods. The performance of the models is evaluated on the test set. CEs, BSs, 
and AUC values are shown across targets for selected uncertainty estimation methods and their Platt-scaled counterparts. Results are averaged 
over ten model repetitions, except for the deep ensemble models, for which five model repeats were computed. For each performance metric, 
the results of the best model are bold and underlined. All other bold results are statistically indistinguishable from the best result as reported 
in a t-test ( p < 0.05)
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estimation methods improved model performance. To 
do so, we used Platt scaling by fitting a logistic regression 
to the logits of the deep ensemble and the HBLL model 
predictions. Interestingly, Platt scaling did not always 
improve model calibration. In general, CEs of the cali-
brated models were smaller when the train-time uncer-
tainty estimation model could not improve probability 
calibration, which was often the case for the results of 
the ensemble model. The HBLL model already exhib-
ited small CEs before the post hoc calibrating step. Platt 
scaling of these models produced smaller CEs only in 
one out of three targets, and it failed to retrieve signifi-
cantly better BS for all three datasets. In this study, we 
applied different HP optimization strategies and uncer-
tainty estimation methods to shallow small neural net-
works. The size of the models was carefully tuned, and 
shallow neural networks were chosen after concluding 

that deeper networks did not improve model perfor-
mance. At the same time, we acknowledge that the small 
size of the considered models is a limitation of our work 
since it is uncertain if our findings are also valid for more 
sophisticated chemical descriptors and larger neural net-
works. While evaluating such approaches was beyond the 
scope of the current study, it should be explored in future 
research. In the framework of the drug discovery process, 
our work provides important insight into how to achieve 
reliable uncertainty estimates, facilitating well-informed 
decision-making and a resource- and time-efficient pipe-
line for the development of new therapeutic agents.

Appendix A probability calibration study
See Tables 2, 3, 4 and 5.

Table 2  Results of the probability calibration study for all targets. The performance of the models is evaluated on the test set. 
The model HPs were tuned to optimize the AUC score on a validation set. CEs, BSs and AUC values are shown across targets for all 
probability calibration methods. Results are averaged over 10 model repetitions, except for the deep ensemble models, for which 5 
model repeats were computed

HP-Metric: AUC​

Target Model ECE ACE BS AUC​

CYP3A4 MLP 0.1799 ± 0.0111 0.1709 ± 0.0121 0.1951 ± 0.0103 0.7682 ± 0.0087

MLP + P 0.0415 ± 0.0072 0.0438 ± 0.0068 0.1586 ± 0.0048 0.7682 ± 0.0087

MLP-D 0.2262 ± 0.0964 0.2262 ± 0.0948 0.2395 ± 0.0539 0.6968 ± 0.0276

MLP-E 0.1142 ± 0.0017 0.1054 ± 0.0024 0.1602 ± 0.0002 0.7957 ± 0.0015

MLP-E + P 0.0551 ± 0.0046 0.0542 ± 0.004 0.1503 ± 0.0002 0.7957 ± 0.0015

HBLL 0.0452 ± 0.0114 0.0448 ± 0.0103 0.1589 ± 0.0046 0.7684 ± 0.0083

HBLL + P 0.0452 ± 0.0114 0.0448 ± 0.0103 0.1589 ± 0.0046 0.7684 ± 0.0083

MAO-A MLP 0.2379 ± 0.0185 0.2281 ± 0.017 0.252 ± 0.016 0.695 ± 0.0134

MLP + P 0.0574 ± 0.0125 0.0619 ± 0.0129 0.1926 ± 0.0058 0.695 ± 0.0134

MLP-D 0.0902 ± 0.0322 0.0942 ± 0.0337 0.2063 ± 0.0123 0.6562 ± 0.0196

MLP-E 0.1544 ± 0.0053 0.1437 ± 0.0029 0.2099 ± 0.0016 0.7187 ± 0.0028

MLP-E + P 0.0643 ± 0.0044 0.0578 ± 0.0101 0.1861 ± 0.0011 0.7187 ± 0.0028

HBLL 0.0607 ± 0.0148 0.0647 ± 0.0128 0.1959 ± 0.0047 0.6824 ± 0.0139

HBLL + P 0.0607 ± 0.0148 0.0647 ± 0.0128 0.1959 ± 0.0047 0.6824 ± 0.0139

hERG MLP 0.0763 ± 0.0061 0.0721 ± 0.0085 0.079 ± 0.0052 0.761 ± 0.0139

MLP + P 0.0102 ± 0.0024 0.015 ± 0.0023 0.0576 ± 0.0005 0.761 ± 0.0139

MLP-D 0.3175 ± 0.1577 0.3172 ± 0.1578 0.1875 ± 0.1368 0.6205 ± 0.0526

MLP-E 0.0539 ± 0.0033 0.0535 ± 0.0031 0.0662 ± 0.0008 0.8088 ± 0.0032

MLP-E + P 0.0126 ± 0.0007 0.0199 ± 0.0026 0.0559 ± 0.0002 0.8088 ± 0.0032

HBLL 0.0126 ± 0.0007 0.0199 ± 0.0026 0.0559 ± 0.0002 0.8088 ± 0.0032

HBLL + P 0.0126 ± 0.0007 0.0199 ± 0.0026 0.0559 ± 0.0002 0.8088 ± 0.0032
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Table 3  Results of the probability calibration study for all targets. The performance of the models is evaluated on the test set. The 
model HPs were tuned to optimize the accuracy (ACC) on a validation set. CEs, BSs and AUC values are shown across targets for all 
model types. Results are averaged over 10 model repetitions, except for the deep ensemble models, for which 5 model repeats were 
computed

HP-Metric: ACC​

Target Model ECE ACE BS AUC​

CYP3A4 MLP 0.1488 ± 0.0031 0.1435 ± 0.0036 0.1759 ± 0.0015 0.7798 ± 0.0055

MLP + P 0.037 ± 0.0053 0.0371 ± 0.004 0.1536 ± 0.0018 0.7798 ± 0.0055

MLP-D 0.0453 ± 0.0123 0.0457 ± 0.0096 0.1559 ± 0.0021 0.7781 ± 0.0049

MLP-E 0.1369 ± 0.0031 0.1333 ± 0.0032 0.1703 ± 0.0003 0.7877 ± 0.0008

MLP-E + P 0.0345 ± 0.0012 0.0342 ± 0.0012 0.1517 ± 0.0001 0.7877 ± 0.0008

HBLL 0.0373 ± 0.0075 0.046 ± 0.0051 0.158 ± 0.0023 0.7741 ± 0.0067

HBLL + P 0.0373 ± 0.0075 0.046 ± 0.0051 0.158 ± 0.0023 0.7741 ± 0.0067

MAO-A MLP 0.2207 ± 0.0232 0.2136 ± 0.0252 0.2391 ± 0.0224 0.7082 ± 0.0287

MLP + P 0.0544 ± 0.0159 0.0604 ± 0.015 0.188 ± 0.0107 0.7082 ± 0.0287

MLP-D 0.1247 ± 0.0284 0.1275 ± 0.0256 0.2126 ± 0.0088 0.66 ± 0.0292

MLP-E 0.139 ± 0.0028 0.1345 ± 0.0023 0.2005 ± 0.0011 0.728 ± 0.0038

MLP-E + P 0.0568 ± 0.0044 0.0628 ± 0.0059 0.1826 ± 0.001 0.728 ± 0.0038

HBLL 0.0563 ± 0.0166 0.0638 ± 0.0137 0.1897 ± 0.0078 0.7039 ± 0.0292

HBLL + P 0.0563 ± 0.0166 0.0638 ± 0.0137 0.1897 ± 0.0078 0.7039 ± 0.0292

hERG MLP 0.1028 ± 0.0991 0.1019 ± 0.0997 0.0792 ± 0.0324 0.6928 ± 0.0806

MLP + P 0.0091 ± 0.0016 0.0205 ± 0.0045 0.0591 ± 0.0024 0.6928 ± 0.0806

MLP-D 0.2654 ± 0.0859 0.2645 ± 0.0866 0.138 ± 0.0486 0.6281 ± 0.078

MLP-E 0.0851 ± 0.0135 0.0766 ± 0.0127 0.0626 ± 0.0023 0.741 ± 0.0064

MLP-E + P 0.0089 ± 0.0016 0.0217 ± 0.003 0.0566 ± 0.0003 0.741 ± 0.0064

HBLL 0.0302 ± 0.0128 0.0304 ± 0.0128 0.0595 ± 0.0036 0.6917 ± 0.0835

HBLL + P 0.0302 ± 0.0128 0.0304 ± 0.0128 0.0595 ± 0.0036 0.6917 ± 0.0835
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Table 4  Results of the probability calibration study for all targets. The performance of the models is evaluated on the test set. The 
model HPs were tuned to optimize the BCE loss on a validation set. CEs, BSs and AUC values are shown across targets for all model 
types. Results are averaged over 10 model repetitions, except for the deep ensemble models, for which 5 model repeats were 
computed

HP-Metric: BCE loss

Target Model ECE ACE BS AUC​

CYP3A4 MLP 0.0698 ± 0.0056 0.0663 ± 0.005 0.1506 ± 0.0014 0.7975 ± 0.0028

MLP + P 0.0373 ± 0.0036 0.039 ± 0.0046 0.1469 ± 0.0007 0.7975 ± 0.0028

MLP-D 0.1476 ± 0.0246 0.1523 ± 0.0225 0.1783 ± 0.0095 0.7797 ± 0.0077

MLP-E 0.0674 ± 0.0012 0.0611 ± 0.001 0.1496 ± 0.0004 0.8004 ± 0.0008

MLP-E + P 0.0366 ± 0.0018 0.0375 ± 0.001 0.1461 ± 0.0003 0.8004 ± 0.0008

HBLL 0.0585 ± 0.0333 0.0604 ± 0.0327 0.1521 ± 0.0079 0.7966 ± 0.0029

HBLL + P 0.0393 ± 0.0063 0.0398 ± 0.0048 0.1473 ± 0.0008 0.7966 ± 0.0029

MAO-A MLP 0.1696 ± 0.0116 0.1663 ± 0.0122 0.212 ± 0.006 0.7219 ± 0.0057

MLP + P 0.0473 ± 0.0084 0.0455 ± 0.0061 0.1838 ± 0.0017 0.7219 ± 0.0057

MLP-D 0.1268 ± 0.0061 0.1259 ± 0.0067 0.2019 ± 0.0043 0.7142 ± 0.0081

MLP-E 0.1729 ± 0.0016 0.1701 ± 0.0007 0.2124 ± 0.0006 0.7212 ± 0.0007

MLP-E + P 0.0428 ± 0.0011 0.0446 ± 0.0044 0.1838 ± 0.0002 0.7212 ± 0.0007

HBLL 0.0465 ± 0.0061 0.0439 ± 0.0037 0.1851 ± 0.0018 0.7254 ± 0.0054

HBLL + P 0.0355 ± 0.0061 0.0318 ± 0.0049 0.1838 ± 0.0017 0.7254 ± 0.0054

hERG MLP 0.0289 ± 0.0079 0.0254 ± 0.0063 0.0541 ± 0.0018 0.8061 ± 0.0031

MLP + P 0.0148 ± 0.0023 0.0204 ± 0.0017 0.0547 ± 0.0003 0.8061 ± 0.0031

MLP-D 0.0815 ± 0.0186 0.0792 ± 0.0191 0.0607 ± 0.0043 0.8061 ± 0.0072

MLP-E 0.0294 ± 0.0012 0.0285 ± 0.001 0.0541 ± 0.0002 0.8083 ± 0.0002

MLP-E + P 0.0133 ± 0.0006 0.021 ± 0.0004 0.0545 ± 0.0001 0.8083 ± 0.0002

HBLL 0.0111 ± 0.0037 0.0112 ± 0.0066 0.0534 ± 0.0009 0.7991 ± 0.0053

HBLL + P 0.0133 ± 0.001 0.02 ± 0.002 0.055 ± 0.0004 0.7991 ± 0.0053
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Appendix B: Additional experiments
B.1 Performance of deeper MLPs
See Table 6.

Table 5  Results of the probability calibration study for all targets. The performance of the models is evaluated on the test set. CEs, 
BSs and AUC values are shown across targets for all probability model types. The model HPs were tuned to optimize the ACE on a 
validation set. Results are averaged over 10 model repetitions, except for the deep ensemble models, for which 5 model repeats were 
computed

HP-Metric: ACE

Target Model ECE ACE BS AUC​

CYP3A4 MLP 0.068 ± 0.0062 0.0635 ± 0.0073 0.1548 ± 0.0039 0.7872 ± 0.0072

MLP + P 0.0419 ± 0.0118 0.0429 ± 0.0119 0.1522 ± 0.0031 0.7872 ± 0.0072

MLP-D 0.2551 ± 0.0158 0.2542 ± 0.0142 0.2437 ± 0.0075 0.6717 ± 0.0267

MLP-E 0.0457 ± 0.0026 0.0415 ± 0.0007 0.1451 ± 0.0004 0.8043 ± 0.0007

MLP-E + P 0.0423 ± 0.0035 0.0435 ± 0.0037 0.1451 ± 0.0004 0.8043 ± 0.0007

HBLL 0.0461 ± 0.0062 0.047 ± 0.0047 0.1536 ± 0.003 0.7872 ± 0.0078

HBLL + P 0.0461 ± 0.0062 0.047 ± 0.0047 0.1536 ± 0.003 0.7872 ± 0.0078

MAO-A MLP 0.0999 ± 0.0076 0.0962 ± 0.009 0.1808 ± 0.0021 0.7461 ± 0.0035

MLP + P 0.0642 ± 0.0044 0.0677 ± 0.0069 0.1744 ± 0.0011 0.7461 ± 0.0035

MLP-D 0.0671 ± 0.0064 0.0677 ± 0.0098 0.1771 ± 0.0018 0.7396 ± 0.0051

MLP-E 0.085 ± 0.0025 0.0921 ± 0.0012 0.1797 ± 0.0004 0.7469 ± 0.0007

MLP-E + P 0.0713 ± 0.0027 0.0703 ± 0.0015 0.1743 ± 0.0002 0.7469 ± 0.0007

HBLL 0.0638 ± 0.006 0.0848 ± 0.0073 0.1786 ± 0.0017 0.746 ± 0.0035

HBLL + P 0.0638 ± 0.006 0.0848 ± 0.0073 0.1786 ± 0.0017 0.746 ± 0.0035

hERG MLP 0.0328 ± 0.0109 0.0317 ± 0.0111 0.0586 ± 0.0033 0.7742 ± 0.0348

MLP + P 0.0112 ± 0.0051 0.0166 ± 0.0046 0.0569 ± 0.0015 0.7742 ± 0.0348

MLP-D 0.4349 ± 0.1518 0.4343 ± 0.1531 0.2737 ± 0.1126 0.5771 ± 0.0763

MLP-E 0.0157 ± 0.002 0.0165 ± 0.0031 0.0533 ± 0.0003 0.8154 ± 0.0024

MLP-E + P 0.012 ± 0.0013 0.0195 ± 0.0014 0.0542 ± 0.0002 0.8154 ± 0.0024

HBLL 0.0188 ± 0.0083 0.0224 ± 0.0096 0.0573 ± 0.0027 0.7797 ± 0.0268

HBLL + P 0.0188 ± 0.0083 0.0224 ± 0.0096 0.0573 ± 0.0027 0.7797 ± 0.0268



Page 18 of 24Friesacher et al. Journal of Cheminformatics           (2025) 17:29 

B.2 Model Performance on Training vs. Test set
See Table 7.

Table 6  BCE-Loss and AUC achieved on the validation dataset.
Models with different numbers of layers are compared. The 
average and standard deviation of 10 model repeats are shown

Nr. of Layers Validation Loss Validation AUC​

1 0.2956 ± 0.0014 0.9191 ± 0.0009

2 0.2932 ± 0.0043 0.9180 ± 0.0021

3 0.3051 ± 0.0032 0.9118 ± 0.0005

4 0.3151 ± 0.0062 0.9180 ± 0.0024

Table 7  Model performance on the training vs test set for models trained with the CYP3A4, MAO-A, and hERG datasets. Models 
trained with different HP metrics (ACC, AUC, BCE, ACE) are shown. Model performance is reported in terms of AUC, BS, and ACE. 
Averages and standard deviations of 10 model repeats are reported

HP Metric AUC​ BS ACE

Train Test Train Test Train Test

CYP3A4

 ACC​ 0.9999 ± 0.0001 0.7798 ± 0.0055 0.0020 ± 0.0001 0.1759 ± 0.0015 0.0048 ± 0.0003 0.1435 ± 0.0036

 AUC​ 0.9999 ± 0.0001 0.7682 ± 0.0087 0.0023 ± 0.0002 0.1951 ± 0.0103 0.0009 ± 0.0002 0.1709 ± 0.0121

 BCE 0.9967 ± 0.0002 0.7975 ± 0.0028 0.0299 ± 0.0003 0.1506 ± 0.0014 0.0503 ± 0.0026 0.0663 ± 0.005

 ACE 0.9800 ± 0.0030 0.7872 ± 0.0072 0.0516 ± 0.0017 0.1548 ± 0.0039 0.0314 ± 0.003 0.0635 ± 0.0073

MAO-A

 ACC​ 0.9999 ± 0.0001 0.7082 ± 0.0287 0.0040 ± 0.0001 0.2391 ± 0.0224 0.0006 ± 0.0001 0.2136 ± 0.0252

 AUC​ 0.9999 ± 0.0001 0.6950 ± 0.0134 0.0039 ± 0.0001 0.2520 ± 0.016 0.0002 ± 0.0017 0.2281 ± 0.0134

 BCE 0.9996 ± 0.0001 0.7219 ± 0.0057 0.0078 ± 0.0002 0.2120 ±0.006 0.0031 0.0002 0.1663 ± 0.0122

 ACE 0.9961 ± 0.0002 0.7461 ± 0.0035 0.0299 ± 0.0004 0.1808 ± 0.0021 0.0486 ± 0.0007 0.0962 ± 0.0009

hERG

 ACC​ 0.9999 ± 0.0001 0.6928 ± 0.0134 0.0009 ± 0.0004 0.0792 ± 0.0324 0.0001 ± 0.0008 0.1019 ± 0.0997

 AUC​ 0.9999 ± 0.0001 0.7610 ± 0.0139 0.0012 ± 0.0002 0.0790 ± 0.0052 0.0001 ± 0.0001 0.0721 ± 0.0085

 BCE 0.9994 ± 0.0001 0.8061 ± 0.0031 0.0055 ± 0.0001 0.0541 ± 0.0018 0.0027 ± 0.0002 0.0254 ± 0.0063

 ACE 0.9409 ± 0.001 0.7742 ± 0.0348 0.0392 ± 0.0005 0.0586 ± 0.0033 0.0070 ± 0.0005 0.0586 ± 0.0111
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Appendix C: Hyperparameter tuning
See Tables 8 and 9.

Appendix D: Computation time of models
See Table 10.

Appendix E: Risk decomposition for proper losses: 
calibration and refinement
In the following section, we give some necessary defi-
nitions to present the decomposition property of the 
expected proper loss to calibration error and refinement. 
In our paper we use the word calibration and calibration 
error in the specific sense implied by this decomposition.

To formally define calibration, first we need to define 
a proper loss: a proper score which is negatively ori-
ented, meaning smaller values of the score indicates 
better agreement with the ground truth distribution 
of the outcomes. We give all definitions for the case of 
binary classification for simplicity.

Definition E.1  (Proper loss) A loss function 
L : �2, {0, 1} → R is a proper loss function if and only if

for all distribution P, where Q is the ground truth distri-
bution over the outcomes, and �2 is the 2 dimensional 
probability simplex, that is �2 ⊂ R where [x, 1− x] ∈ �2.

We will use the property that every proper loss can be 
written in a form of a Bregman divergence [69].

Definition E.2  (Bregman divegence) Let F : � → R 
be a continuously differentiable strictly convex function 
defined on a convex set � . The Bregman divergence asso-
ciated with F is defined as

where p, q ∈ �.

For example the Brier loss can be derived using 
� = �2 and F(p) = ||p||2 . Using the definition of Breg-
man divergences:

We call the expectation of the loss over the data distri-
bution the Risk. The definition for binary classification is 
the following.

Definition E.3  (Risk) Let L : �2, {0, 1} → R be a loss 
function, and f : X → �2 a classifier mapping from 

Eω∼Q[L(Q,ω)] ≤ Eω∼Q[L(P,ω)]

DF (p, q) = F(p)− F(q)− �∇F(q), p− q� ,

(5)DF (p, q) = ||p||2 − ||q||2 − 2q⊤(p− q)

(6)= ||p||2 − ||q||2 − 2q⊤p+ 2||q||2

(7)= ||p||2 + ||q||2 − 2q⊤p

(8)= ||p− q||2

Table 8  Overview of the parameter space screened during 
HP tuning of the baseline MLP model. The HP were tuned for 
each dataset using four different HP metrics. The assess the 
performance on the validation set, the average of ten model 
repetitions was obtained. The overview presents the range of HP 
explored during the tuning process

Model Hyperparameter Explored Space

Baseline MLP Learning rate {1e-5, 1r-4, 1e-3, 1e-2, 0.1}

Hidden size {5, 10, 20, 30, 40, 50, 60, 70, 
80, 90, 100, 110, 120, 130}

Weight decay {1e-5, 1r-4, 1e-3, 1e-2, 0.1}

Dropout {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

Table 9  Overview of the parameter space screened to tune 
the prior of the parameters from a Bayesian Logistic regression, 
which was used as the last layer in the HBLL models. More 
precisely, the precision of the Gaussian prior of the model 
parameters was optimized using the validation set

Model Hyperparameter Explored Space

HBLL Precision of the {100, 150, 200, 250, 300, 400, 600,

Gaussian prior 800, 1000, 1200, 1400, 1600, 1800, 2000}

Table 10  Time required for models included in the study. The 
left column lists the time needed for training ( Ttrain ), and the right 
column the time needed for inference ( Tinference ). The meanings 
of the abbreviations used in the table are provided below. Typical 
training times for models ( Ttrain ) used in this study are listed in 
the last column

1) Required time T for...

Tf  : one forward pass, Tb : one backpropagation step,

Ts : one HMC step, Tflast : forward pass of last layer 

2) Number of..

nm : mini-batches, nf  : forward passes in MLP-D, ne : base estimators

in MLP-E, ns : samples in HMC, L: simulation steps in HMC

Model Ttrain Tinference Typical 
Training 
Time

MLP nm ∗ (Tf + Tb) Tf ∼ 7:30 min

MLP-D nm ∗ (Tf + Tb) nf ∗ Tf ∼ 7:30 min

MLP-E ne ∗ nm ∗ (Tf + Tb) ne ∗ Tf ∼ 188 min

HBLL nm ∗ (Tf + Tb)+ L ∗ ns ∗ (Tflast + Ts) ns ∗ Tf ∼ 175 min
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the input space to the probability space. We define the 
following expected loss as the Risk associated to the 
classifier:

In the following we will omit the dataset distribution 
P(X, Y) from the subscript of the expectations to improve 
readability.

Using the properties of Bregman divergences, the Risk 
associated with a proper loss can be decomposed in the fol-
lowing form [69, 70]:

A crucial element of the above expression is the condi-
tional expectation E[y|f (x)] . This intuitively represents 
the expected fraction of positive outcomes, given the 
prediction is f(X). This expectation is not available in a 
closed form. Histogram estimate is used by ACE and ECE 
to estimate this quantity by counting the positive out-
comes for different τi ≤ f (x) < τi+1 bins:

where IE is an indicator 1 if E logical expression is true 
and 0 otherwise. Intuitively the above expression gives 
the ratio of positive examples in the ith bin.

The loss between this estimate and the mean proba-
bilistic prediction f(x) within the bin is the calibration 
error. Most often L1 loss (absolute distance) is used in 
the literature, resulting in the ACE and ECE estimates.

It is easy to show that the L2 calibration error directly 
corresponds to the calibration part of the Brier score [69]:

While using histogram estimate is the most often used 
solution, it is not the only possibility. Recently a new class 
of differentiable estimates was published based on Dir-
ichlet kernel density estimator [71].

Appendix F: Training of and prediction 
with multilayer perceptrons (MLP)
This section aims to give the mathematical background 
for training and predicting with multilayer perceptrons 
(MLPs). For more details, we refer to [72]. MLPs are feed-
forward neural network models that consist of multiple 
layers of interconnected nodes that apply nonlinear func-
tions to a linear combination of the inputs.

For the input variables X := {x1, ..., xM} , the fist layer 
(1) of hidden size M is constructed by taking the linear 
combinations of these inputs weighted by the weights 
w
(1)
ji  and adding biases b(1)j0  , with j = 1, 2, ...M:

R = EX ,Y∼P(X ,Y )[L(f (X),Y )].

E[DF (f (x), y)]
︸ ︷︷ ︸

Risk

= E[DF (E[y|f (x)], f (x))]
︸ ︷︷ ︸

Calibration error

+E[−F(E[y|f (x)]]
︸ ︷︷ ︸

Refinement

E[y|f (x)] ≈ ōi =

∑

i yiIτ1<f (xi)<τ2
∑

i Iτ1<f (xi)<τ2

,

E[||f (x)− y)||2] = E[||E[y|f (x)] − f (x)||2] − E[||E[y|f (x)]||2]

Subsequently, a nonlinear activation function h(.) is 
applied to retrieve the output activations:

In our work, we use Rectified linear unit (ReLU) func-
tions as activation functions. The retrieved output acti-
vations can be again transformed by additional layers, 
following the same concept. These layers take the acti-
vated output of the previous layer as input and apply a 
nonlinear activation function to the linear combina-
tions of input, and the model parameters θ (weights and 
biases).

The MLP baseline models used in this study consist of 
one layer as described in Eq. F6, plus a second linear layer 
of size 1. Subsequently, these scores are transformed to 
probability-like output using a logistic sigmoid function 
σ(.) . An illustration of the architecture of the baseline mod-
els can be found in Fig. 2.

F.1 Forward pass
A forward pass through the MLP refers to passing input 
data through the network’s layers to compute the probabil-
istic output using the current model parameters θ.

The output y of the baseline MLP model used in this 
work can be obtained with

During inference, forward passes are performed to pro-
cess input data through the network and generate predic-
tions. Furthermore, forward passes are an integral part of 
the neural network training process, used to compute the 
training loss, which is then employed to adjust the model 
parameters through backpropagation.

F.2 Training by error backpropagation
The backpropagation step is essential for neural networks 
to learn from the data. The goal is to minimize the error 
between the predicted output and the target value by 
adjusting the parameters of the model. This error can be 
obtained by using a loss function, such as the BCE loss, 
which is commonly used for classification tasks and was 
also used for model training in this work. During model 
training, forward passes are used to obtain predictions for 
the training data and calculate the error. Subsequently, the 
error is used in the backpropagation step to modify the 
model’s parameters. Backpropagation relies on the chain 
rule to compute the gradients of the loss function with 

(9)z
(1)

k =

D∑

i=1

w
(1)
ji xi + b

(1)
j .

(10)a
(1)

k = h(zk).

(11)y(x, θ) = σ(

M∑

j=1

w
(2)
j h(

D∑

i=1

w
(1)
ji + b

(1)
j )+ b(1)).
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respect to each parameter. Thus, using Loss L , for a single 
weight in layer l, we can compute the gradient as

in which

We now can define the error δlj in neuron j in layer l as

Using the chain rule, the error can be propagated through 
the network starting from the output layer (backward 
pass). The error associated with each layer l is stored as 
δl , used for efficiently calculating the local gradients for 
the parameters in the previous layers. Subsequently, the 
weights W l of a layer l can be updated with

(12)
∂L

∂w
(l)
jk

=
∂L

∂z
(l)
j

∂z
(l)
j

∂w
(l)
jk

(13)z
(l)
j =

M∑

k=1

w
(l)
jk a

l−1
k + blj .

(14)δ
j
i =

∂L

∂z
(l)
j

(15)W
l = W

l − η
∂L

∂W l

where η denotes the stepsize. The same procedure can be 
used to update the values for the bias. Additional details 
are available in [72].

Appendix G: Algorithm: HMC bayesian last layer
We report the algorithm for the HBLL approach. To 
simulate a smooth trajectory through the negative 
log space of the unnormalized posterior, the auxiliary 
momentum variable (p) is introduced. Together with 
the position variables θ , the total energy of the system 
H can be calculated; Hamiltonian function is defined as 
H = U(θ + 1

2
rT .

After sampling the position θ and the momentum p, 
the leapfrog integrator is used to obtain the trajectories 
to generate samples t := {1, 2, ...T } . At the end of each 
simulation, a Metropolis-Hastings step is applied to 
check if the energy was preserved and the sample θ̃ is 
accepted. We refer to [46] for more details on HMC.

We introduce θ as the randomly initialized param-
eters of the logistic regression and the auxiliary vari-
able (p) for the momentum. Let X := {x0, x1, ...xN } be 
the test data and g(x) be the output of the first layer 
of the previously trained baseline MLP. M is the mass 
matrix, while stepsize is denoted with ǫ and the number 
of steps with L.

Algorithm 1  Bayesian Last Layer with Hamiltonian Monte Carlo
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