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Abstract 

The evaluation of compound-target interactions (CTIs) is at the heart of drug discovery efforts. Given the substantial 
time and monetary costs of classical experimental screening, significant efforts have been dedicated to develop 
deep learning-based models that can accurately predict CTIs. A comprehensive comparison of these models 
on a large, curated CTI dataset is, however, still lacking. Here, we perform an in-depth comparison of 12 state-of-the-
art deep learning architectures that use different protein and compound representations. The models were selected 
for their reported performance and architectures. To reliably compare model performance, we curated over 300 
thousand binding and non-binding CTIs and established several gold-standard datasets of varying size and informa-
tion. Based on our findings, DeepConv-DTI consistently outperforms other models in CTI prediction performance 
across the majority of datasets. It achieves an MCC of 0.6 or higher for most of the datasets and is one of the fastest 
models in training and inference. These results indicate that utilizing convolutional-based windows as in DeepConv-
DTI to traverse trainable embeddings is a highly effective approach for capturing informative protein features. We 
also observed that physicochemical embeddings of targets increased model performance. We therefore modified 
DeepConv-DTI to include normalized physicochemical properties, which resulted in the overall best performing 
model Phys-DeepConv-DTI. This work highlights how the systematic evaluation of input features of compounds 
and targets, as well as their corresponding neural network architectures, can serve as a roadmap for the future devel-
opment of improved CTI models.

Scientific contribution
This work features comprehensive CTI datasets to allow for the objective comparison and benchmarking of CTI 
prediction algorithms. Based on this dataset, we gained insights into which embeddings of compounds and tar-
gets and which deep learning-based algorithms perform best, providing a blueprint for the future development 
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Introduction
A compound typically manifests its therapeutic effects by 
interacting with proteins, referred to as compound tar-
gets. An interaction between a compound and its target 
can regulate the target’s activity, either by enhancing or 
suppressing its function. A comprehensive understand-
ing of the interaction between a compound and its target 
is imperative for effective drug development. Research-
ers investigate the structure and functionality of com-
pounds and their respective targets to identify potential 
binding sites and facilitate the repurposing and develop-
ment of compounds capable of interacting with them [1]. 
Additionally, predicting potential off-target interactions 
is vital for assessing the potential risks linked to a com-
pound and formulating approaches to mitigate undesired 
side effects [2]. Due to the high cost associated with wet-
lab experimental methods and the enormous number 
of potential compound-target interactions (CTIs), deep 
learning-based models have been developed to address 
the scale and complexity of the drug discovery process 
[3].

CTI prediction encounters several significant chal-
lenges, with some crucial ones outlined below: (i) Data 
sparsity: CTI prediction models depend extensively on 
labeled data for training. However, obtaining experimen-
tal data can be limited, particularly for less-explored tar-
gets or novel compounds. This data sparsity issue arises 
due to varying data reliability and quality, potentially 
introducing biases and errors in predictions. (ii) Prom-
iscuity of compounds and proteins: Many proteins par-
ticipate in multiple signaling pathways, and compounds 
often interact with multiple targets, leading to complex 
interactions that can be difficult to predict accurately. 
(iii) Availability of structural information: The accuracy 
of CTI prediction models is impacted by the availability 
of high-quality structural data on both compounds and 
targets. Lack of detailed structural information can hin-
der the understanding of binding mechanisms and inter-
actions between compounds and their targets, affecting 
prediction reliability. (iv) Drug toxicity and adverse side 
effects: A thorough understanding of compound selectiv-
ity is vital for successful drug development and safe clini-
cal application. To address these challenges, it is crucial 
to utilize informative features encompassing comprehen-
sive information and encoding structural and sequential 
characteristics of compounds and targets. Incorporating 

such features into prediction models can enhance accu-
racy and reliability in CTI predictions.

CTI prediction models are typically stratified into four 
categories based on their input features: sequence-based, 
structure-based, sequence-structure-based (hybrid), and 
knowledge graph (KG)-based models [4]. Sequence-
based models process compounds and targets as char-
acter sequences and are sometimes implemented using 
language-based models such as transformers [5, 6]. For 
each character, the representative vector can be chosen 
from various options, such as one-hot vectors, trainable 
embeddings, physicochemical properties, k-mers embed-
dings, and learned embeddings derived from a trained 
model [7, 8]. In some cases, subsequences of compounds 
and targets are used as input features. For example, Mol-
Trans employs a sequential pattern approach to extract 
a hierarchical set of frequent subsequences from com-
pounds and targets [9]. The structure-based models 
aim to extract features from the two- (or three-) dimen-
sional structure of proteins or compounds. Based on 
the structural information, different models attempt to 
represent them in two main formats: graph-based rep-
resentations, such as atom and residue interaction net-
works, or vector-based representations, such as drug 
fingerprints and protein descriptors. These models com-
monly employ graph-based neural networks, such as 
graph attention (GAT) layers or graph convolutional net-
works (GCNs), to facilitate this process [10, 11]. Hybrid 
models have been devised by fusing the sequential and 
structural information of proteins and compounds [12]. 
In some approaches, the sequence of a protein (or com-
pound) and the 2D structure of a compound (or protein) 
are used as input features [13]. For example, Chen et al. 
introduced an encoder-decoder model that incorporates 
BERT-based embeddings for targets and the atom inter-
action network of compounds as input features [14]. The 
KG-based models have emerged by integrating diverse 
data sources into a unified framework for CTI prediction. 
These sources include protein-protein interactions, com-
pound-compound interactions, and similarity networks 
[15, 16].

Recently, Guvenilir et al. [17] conducted a study on tar-
get featurization using two machine learning-based mod-
els, support vector machine (SVM) and random forest 
(RF). However, their comparison of target input features 
does not include 2D and 3D structure-based features of 

of CTI algorithms. Using the insights gained from this screen, we provide a novel CTI algorithm with state-of-the-art 
performance.
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embeddings, Protein descriptors, Protein trainable embeddings
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targets and compounds or deep learning-based repre-
sentations thereof. Investigating the impact of various 
input feature types and model architectures on the per-
formance of CTI prediction enables the identification of 
more effective representative embeddings and appropri-
ate neural network blocks for proteins and compounds. 
Informative and representative features are expected 
to be capable of encoding valuable information about 
molecular structure, functional groups, and other rel-
evant descriptors that influence CTI. Hence, it is antici-
pated that the distinctive feature vectors of two proteins 
or compounds that are similar to each other (with minor 
structural differences) will be clearly distinguished, and 
these dissimilarities will be encoded within the feature 
vectors themselves.

In pursuit of this goal, we assessed the performance of 
state-of-the-art sequence-based, structure-based, and 
hybrid models to investigate the capabilities and con-
tributions of diverse input features and their respective 
neural network architectures. Given the nature of the 
KG-based models, they do not provide a precise deline-
ation of the individual contribution of each input fea-
ture to the prediction performance. Consequently, we 
excluded them from further consideration.

Evaluating various input features and models necessi-
tates the use of reliable and comprehensive datasets. In 
this study, we employed distinct datasets that varied from 
uniformly distributed proteins or compounds across the 
training and test sets (warm-start splitting scenario) to 
test sets that encompass unseen proteins or compounds 
(cold-start splitting scenario). Additionally, it is crucial 
to compare the performance of the models over both a 
large aggregated dataset and separate datasets of varying 
sizes. To further assess the models’ capability to capture 
informative features of targets, we curated a dataset com-
prising training data containing records of wild-type tar-
gets and test data containing records of mutant targets. 
Besides the mentioned datasets, we have also compiled 
an additional dataset that takes into account the presence 
of rotatable bonds in compounds. In essence, our interest 
lies in assessing how well the models perform when the 
dataset includes or excludes compounds with a signifi-
cant number of rotatable bonds, particularly in terms of 
predicting interactions.

Results
Figure  1 provides an overview of the general workflow 
of this study. The models utilize various types of neural 
network blocks designed to suit their respective input 
features (Table  1). Further details about the models are 
provided in   "Models" section. We assessed the models 
using five criteria: Accuracy, AUPR, AUROC, F1-score, 
and Matthews Correlation Coefficient (MCC). Given the 

datasets’ class imbalance, MCC is considered the most 
suitable criterion for model comparison.

Performance evaluation on the large aggregated dataset
As explained in "Random Forest" section, the large aggre-
gated dataset is formed through the consolidation of 
various datasets. Here, we employed two splitting sce-
narios, warm-start, and cold-start, both for compounds 
and targets. The warm-start splitting scenario for com-
pounds involves dividing the dataset into training and 
test sets to evenly distribute the compounds across both 
sets. Consequently, the same compounds present in the 
training set are also included in the test set. In contrast, 
the cold-start splitting scenario for compounds man-
dates that the test set comprises compounds not found 
in the training set. Warm- and cold-start splits for targets 
follow the same logic as for compounds. Detailed infor-
mation on the dataset splits can be found in "Evaluation 
approaches" section . To assess the models, we conducted 
10-fold cross-validation. Supplementary Tables S1-S4 
represent the composition of the training and test sets 
and the detailed information regarding the folds for the 
two splitting scenarios. As observed, the ratio of negative 
samples to positive samples in each fold ranged from 1.9 
to 3 (Supplementary Fig. S3), and the average number of 
rotatable bonds in each fold ranged from 6.7 to 7.8.

In the warm-start scenario for compounds (Fig.  2 
and supplementary Tables S5 and S6), DeepConv-DTI 
(MCC=0.79, AUPR=0.93) takes the top position with a 
significant lead over the second-ranking model, IIFDTI 
(MCC=0.68, AUPR=0.85). Subsequently, we observe 
a slight performance decline with models like Trans-
formerCPI (MCC=0.65, AUPR=0.83), 2DFP-based 
(MCC=0.54, AUPR=0.73), and E3FP-based (MCC=0.53, 
AUPR=0.71), until we encounter a notable drop in 
performance with traditional models based on the 
SMILES notation of compounds, specifically DeepDTA 
(MCC=0.36, AUPR=0.62) and DeepCAT (MCC=0.30, 
AUPR=0.59). PhyGrAtt (MCC=0.28, AUPR=0.53), 
UniRep-based (MCC=0.28, AUPR=0.58), BERT-
based (MCC=0.25, AUPR=0.56), AlphaFoldGrAtts 
(MCC=0.23, AUPR=0.52), PhyChemDG (MCC=0.21, 
AUPR=0.43), and RF (MCC=0.10, AUPR=0.35) models 
follow in subsequent ranks, respectively.

In the warm-start scenario for targets (Fig.  3 and 
supplementary Tables S7 and S8), most of the models, 
including DeepConv-DTI, IIFDTI, 2DFP-based model, 
PhyGrAtt, E3FP-based model, PhyChemDG, and RF, 
exhibit similar performance to the warm-start scenario 
for compounds with slight differences. However, Trans-
formerCPI (MCC=0.67, AUPR=0.85) and DeepDTA 
(MCC=0.44, AUPR=0.67), DeepCAT (MCC=0.38, 
AUPR=0.60), UniRep-based (MCC=0.30, AUPR=0.58), 
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Fig. 1  The overall workflow illustrating the three phases: creation of gold-standard datasets, extraction of various protein and compound input 
features, and the utilization of different neural network blocks to predict compound-target interactions

Table 1  The overview of the different models

1 Convolutional Neural Network blocks
2 Fully Connected Layers
3 Graph Attention v2 Layers
4 Graph Convolutional Network blocks

Model Input features of compounds Input features of targets Neural network blocks

2DFP-based Morgan, MACCS, RDKit-2D, and AtomPair 2D Fingerprints Physicochemical Properties CNN1 and FC2

AlphaFoldGrAtts Atoms’ interaction network + Chemical/Structural Properties 
of atoms

Residue interaction network + Phys-
icochemical Properties

GATv23 and FC

BERT-based Morgan, MACCS, RDKit-2D, and AtomPair Fingerprints Learned Embeddings: BERT (768-d) FC

DeepCAT [18] One-hot vectors of SMILES Physicochemical Properties CNN and FC

DeepConv-DTI [8] Morgan 2D Fingerprint Trainable Embeddings Multiple CNN and FC

DeepDTA [7] Trainable Embeddings Trainable Embeddings CNN and FC

E3FP-based E3FP 3D Fingerprint Physicochemical Properties CNN and FC

IIFDTI [5] Atoms’ interaction network + Smi2Vec Prot2Vec + Trainable Embeddings Bidirectional encoder-
decoder, GAT, and FC

PhyChemDG Atoms’ interaction network + Chemical/Structural Properties 
of atoms

Physicochemical Properties Transformer, GCN4 ,and FC

PhyGrAtt Atoms’ interaction network + Chemical/Structural Properties 
of atoms

Physicochemical Properties GATv2, CNN, and FC

RF One-hot vectors of SMILES Physicochemical Properties Random Forest

TransformerCPI [6] Atoms’ interaction network + Chemical/Structural Properties 
of atoms

K-mers + Word2Vec Transformer, GCN ,and FC

UniRep-based Morgan, MACCS, RDKit-2D, and AtomPair Fingerprints Learned Embeddings: UniRep (1900-d) FC
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BERT-based (MCC=0.27, AUPR=0.56) demonstrate 
better performance compared to the warm-start sce-
nario for compounds.

In the cold-start scenario for compounds, as 
expected, there is a reduction in the performance 
of the various models compared to the warm-start 
splitting scenarios (Fig.  4 and supplementary Tables 
S11 and S12). However, many of the models, includ-
ing DeepConv-DTI (MCC=0.71, AUPR=0.88), 
IIFDTI (MCC=0.62, AUPR=0.81), TransformerCPI 
(MCC=0.58, AUPR=0.77), UniRep-based (MCC=0.27, 
AUPR=0.55), BERT-based (MCC=0.26, AUPR=0.54), 
PhyGrAtt (MCC=0.25, AUPR=0.52), and Alpha-
FoldGrAtts (MCC=0.23, AUPR=0.52), perform bet-
ter than in the case of a cold-start scenario for targets. 
Figure  5 highlights a significant performance disparity 
between the 2DFP-based (MCC=0.40, AUPR=0.56) 
and E3FP-based (MCC=0.26, AUPR=0.45) models. 
The E3FP-based model employs 3D drug fingerprints 
known as E3FP, taking multiple conformer vectors as 

input and extracting a representative compound vector 
through embedded convolutional layers.

The observed reduction in performance of the E3FP-
based model in the cold-start scenario for compounds 
may be attributed to how conformers are extracted. 
In other words, the precision of conformer prediction 
plays a critical role in the creation of 3D drug finger-
prints. This finding suggests that the representative 
embedding for compounds in the 2DFP-based model 
yields more informative results compared to the E3FP-
based model. The analysis of the reduction disparity 
between warm-start and cold-start scenarios for com-
pounds reveals significant decreases in performance 
for drug fingerprint-based models, with reductions 
of 49.3% and 26.3% for E3FP-based and 2DFP-based 
models, respectively. This is expected, as these mod-
els focus on the structure of compounds, making it 
more challenging to predict outcomes for unseen com-
pounds. In contrast, protein structure-based models, 
such as PhyGrAtt and AlphaFoldGrAtts, show minimal 

Fig. 2  Comparison of PR curves for various models on the large aggregated dataset, split using the warm-start splitting scenarios for compounds
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reductions of 3.6% and 5%, respectively (Supplemen-
tary Fig. S4).

In the cold-start scenario for targets (Fig.  5 and sup-
plementary Tables S9 and S10), it is evident that the per-
formance of the transformer-based models, IIFDTI and 
TransformerCPI, and the structure-based models such 
as PhyGrAtt and AlphaFoldGrAtts experienced a signifi-
cant decrease, 34.8%, 38.9%, 53.9%, and 44.5%, respec-
tively, compared to the warm-start scenario for targets 
(Supplementary Fig. S5). This outcome is anticipated for 
AlphaFoldGrAtts and PhyGrAtt, as these models utilize 
the 3D structure of proteins, making it challenging for 
them to predict outcomes for unseen targets. In con-
trast, compound structure-based models, such as those 
utilizing 2DFP and E3FP, demonstrate greater generaliz-
ability, with reductions of 17.6% and 10.4%, respectively, 
and are less impacted by unseen targets. Surprisingly, the 
E3FP-based model (MCC=0.46, AUPR=0.60) secures the 
third position, surpassing TransformerCPI. Besides, the 
models based on language model learned embeddings, 
such as UniRep-based and BERT-based models, exhibit 

minimal reduction in performance. This observation sup-
ports the notion that the learned embeddings derived 
from language models encompass more informative pro-
tein features than other models, enabling them to main-
tain their predictive capabilities for compound binding 
with unseen amino acid sequences. This finding aligns 
with current research in the field [17]. Additionally, Chen 
et al. proposed a model that emphasizes the crucial role 
of using BERT-based embeddings in CTI prediction [14].

While we have several models based on trainable 
target embeddings, there exist multiple approaches to 
capture these features. The remarkable results obtained 
from DeepConv-DTI (MCC=0.59, AUPR=0.78) sug-
gest that the global sliding feature capturing method 
provides more informative features compared to other 
models relying on trainable embeddings. DeepConv-
DTI employs multiple windows of varying sizes to cap-
ture the characteristics of various possible adjacent 
amino acids by sliding the windows from the top to the 
bottom of the embeddings matrix.

Fig. 3  Comparison of PR curves for various models on the large aggregated dataset, split using the warm-start splitting scenarios for targets
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For each scenario, to demonstrate that the models out-
perform random predictions, we assigned random values 
and calculated MCC and AUPR, resulting in values of 
0.00 and 0.28, respectively. The results obtained from the 
PhyChemDG model emphasize the significance of using 
a transformer-encoder to capture informative features 
of the target. PhyChemDG is a variant of Transformer-
CPI, where we replace the transformer-encoder compo-
nent of the target side with fully connected (FC) layers 
that receive input from the physicochemical properties. 
However, the results indicate that this modification leads 
to a decrease in MCC performance of 0.17 to 0.44. Sup-
plementary Fig. S6-S9 show the AUROC of the models 
based on different splitting scenarios.

Evaluating the target representation vectors
Apart from assessing the performance of the models on 
the aggregated dataset, we also evaluated the representa-
tions of various learned models in terms of target clus-
tering. This was achieved by visualizing the targets in 
the dataset in a 2D space using t-distributed stochastic 

neighbor embedding (t-SNE) projection. To clearly dis-
tinguish between different types of targets we catego-
rized them into two classes: enzymes and non-enzymes, 
represented by darker and lighter colors respectively 
(Supplementary Fig. S10–S15). Within the non-enzyme 
category, we further stratified targets into epigenetic 
regulators, ion channels, membrane receptors, transcrip-
tion factors, and transporters. Enzyme targets were cat-
egorized into hydrolases, oxidoreductases, proteases, 
transferases, and other enzymes. As depicted in Supple-
mentary Fig. S10–S15, the targets exhibit distinct clusters 
based on the representations of the UniRep-based and 
BERT-based models. Particularly noteworthy is the abil-
ity of the UniRep-based representations to form more 
refined clusters, like those of membrane receptors and 
transporters, compared to the BERT-based representa-
tions. This distinction might underlie the UniRep-based 
model’s superior performance compared to the BERT-
based model over the large aggregated dataset. With 
regards to the physicochemical properties-based features 
derived from the DeepCAT and E3FP-based models, 

Fig. 4  Comparison of PR curves for various models on the large aggregated dataset, split using the cold-start splitting scenarios for compounds
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we still discern some clusters, particularly for two non-
enzyme targets: ion channels and epigenetic regulators. 
Nevertheless, for the remaining targets, distinct cluster-
ing is absent. The t-SNE plots of target representations 
from the other models lack any discernible patterns and 
do not exhibit distinguishable clusters. Therefore, learned 
embeddings from BERT and UniRep exhibit distinctive 
features as representations for targets. This could con-
tribute to the consistent performance of UniRep-based 
and BERT-based models within a specific range across 
both cold-start and warm-start scenarios.

Performance evaluation of models on distinct datasets
Given that the various datasets employ distinct experi-
mental methods to obtain the binding affinity value for 
each CTI, it is valuable to compare the models across 
separate datasets. In this study, we evaluate the perfor-
mance of the models across three distinct datasets–Davis 
(small), DrugBank (medium), and KiBA (large)–consid-
ering factors such as the number of positive and nega-
tive CTIs, the number of involved proteins, the number 

of involved compounds, and the experimental methods 
used. The dataset sizes are determined by the number 
of positive and negative CTIs. Notably, the Davis dataset 
includes only 72 compounds and 442 proteins. In con-
trast, the DrugBank dataset features over 4,000 proteins 
and approximately 14,000 compounds. The KiBA dataset 
contains a high frequency of compounds (over 52,000) 
but only 467 proteins.. All three datasets are split based 
on a random cold-start splitting for compounds scenario. 
Detailed information about the datasets can be found in 
Supplementary Table S13, and the experimental methods 
are described in "Datasets" section.  Figs. 6 and 7 display 
the performance of the models based on five different cri-
teria: Accuracy, AUPR, AUROC, F1-score, and MCC on 
a spider plot.

In Fig.  6, it is evident that although we achieved 
promising results for the transformer-based models, 
IIFDTI (MCC=0.30, AUPR=0.50) and TransformerCPI 
(MCC=0.22, AUPR=0.37), DeepConv-DTI (MCC=0.38, 
AUPR=0.60), still outperforms both models on the 
Davis dataset. Additionally, the structure-based models, 

Fig. 5  Comparison of PR curves for various models on the large aggregated dataset, split using the cold-start splitting scenarios for targets
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such as PhyGrAtt (MCC=0.17, AUPR=0.40) and Alpha-
FoldGrAtts (MCC=0.10, AUPR=0.33), which utilize GAT 
layers, secure the third position. While the other models 
may exhibit good accuracy, their MCC values are zero or, 
in some cases, negative. These results suggest that these 
models tend to predict the output labels of the majority 
class (0 in this case) on the Davis dataset.

As we move from the Davis dataset to the DrugBank 
dataset (Fig.  7), there is a significant improvement in 
the performance of transformer-based models, spe-
cifically IIFDTI (MCC=0.86, AUPR=0.96) and Trans-
formerCPI (MCC=0.82, AUPR=0.90). We observed 
a similar improvement for the DeepConv-DTI model 
(MCC=0.84, AUPR=0.92). However, it drops from 
the first position to the second position among the 
models. Additionally, we observed enhancements 
in the performance of structure-based models, such 
as PhyGrAtt (MCC=0.26, AUPR=0.38) and Alpha-
FoldGrAtts (MCC=0.24, AUPR=0.36). Furthermore, 
the performance of learned embeddings-based models, 
namely UniRep-based (MCC=0.48, AUPR=0.61) and 

BERT-based (MCC=0.48, AUPR=0.60), emphasizes 
the importance of learned embeddings as target input 
features. These findings are consistent with the results 
reported by Guvenilir et al. [17] and Chen et al. [14].

In Fig.  8, the performance of the models on the 
KiBA dataset is illustrated. It is notable that cer-
tain models, including DeepConv-DTI (MCC=0.52, 
AUPR=0.76), IIFDTI (MCC=0.43, AUPR=0.66), 
TransformerCPI (MCC=0.42, AUPR=0.65) and BERT-
based (MCC=0.17, AUPR=0.50), exhibit a reduction 
in performance compared to the DrugBank dataset. 
However, the performance of structure-based mod-
els, such as PhyGrAtt (MCC=0.28, AUPR=0.56) and 
AlphaFoldGrAtts (MCC=0.22, AUPR=0.53), remains 
relatively stable across all dataset sizes. Based on our 
observations, DeepConv-DTI consistently delivers out-
standing results across three diverse datasets of varying 
sizes and quality. The performance values of the models 
for datasets of varying sizes are shown in supplemen-
tary Tables S14-S16.

Fig. 6  Comparison of models across the small (Davis) dataset
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Training on wild‑type targets and testing on mutated 
targets
We trained the models using a dataset that comprises 
wild-type targets and subsequently tested their per-
formance on a separate dataset consisting of mutated 
targets.

As shown in Fig.  9, the DeepConv-DTI model 
(MCC=0.59, AUPR=0.80), which employs global con-
volutional blocks, outperforms the other models. The 
transformer-based models with encoder-decoder blocks, 
such as TransformerCPI (MCC=0.54, AUPR=0.79) and 
IIFDTI (MCC=0.48, AUPR=0.69), exhibit the second-
highest performance. As expected, the structure-based 
models, PhyGrAtt (MCC=0.38, AUPR=0.67) and Alpha-
FoldGrAtts (MCC=0.26, AUPR=0.43), consistently dem-
onstrate promising results across the dataset.

In the fourth position, the learned embeddings-based 
models, BERT-based (MCC=0.35, AUPR=0.64) and 
UniRep-based (MCC=0.23, AUPR=0.51), exhibit good 
predictive performances. The models utilizing phys-
icochemical properties, such as DeepCAT (MCC=0.32, 
AUPR=0.47), E3FP-based (MCC=0.24, AUPR=0.40), and 

2DFP-based (MCC=0.20, AUPR=0.52), achieved satis-
factory performances. It is noteworthy, however, that 
the models using atom interaction networks for com-
pounds outperform the drug fingerprint-based models. 
On the other hand, the performance of the DeepConv-
DTI model indicates that the influence of the compound 
descriptor can be mitigated through improved target 
feature extraction. The superiority of this model could be 
attributed to its ability to capture features globally rather 
than relying on local feature extraction. Lastly, compar-
ing the performance of TransformerCPI with that of 
PhyChemDG (MCC=0.16, AUPR=0.50) highlights the 
superiority of the target transformer-encoder component 
in the TransformerCPI architecture. The performance 
values of the models for the mutation-aware dataset are 
shown in supplementary Table S17.

The influence of rotatable bonds on CTI predictions
In this section, we want to evaluate how the models per-
form when the dataset includes or excludes compounds 
with a considerable number of rotatable bonds. To evalu-
ate the performance of the models under the condition of 

Fig. 7  Comparison of models across the medium (DrugBank) dataset
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limited rotatable bonds, we utilized two datasets of dif-
ferent sizes: the medium DrugBank dataset and the large 
KiBA dataset (Supplementary Table  S13). We restricted 
this comparison to the eight models that exhibited the 
best performances in the previous sections. In Fig. 10, the 
first two columns of the box plots illustrate the perfor-
mance comparison of the models under two scenarios: 
without any limitation on the number of rotatable bonds 
(left boxplot) and with a limited number of rotatable 
bonds (middle boxplot), assessed by the MCC metric. 
Supplementary Tables S14 and S15 present five different 
performance metrics for various models on the rotatable 
bond-aware datasets.

When applying the limited rotatable bonds (LRB) cri-
terion to the DrugBank dataset, we observed marginal 
improvements for TransformerCPI and substantial 
enhancements for the 2DFP-based model. However, for 
the remaining models, there were no notable changes, 
and in some cases, performance worsened.

In the KiBA dataset, the number of models show-
ing slight improvements expanded to seven, specifi-
cally the 2DFP-based, E3FP-based, AlphaFoldGrAtts, 

BERT-based, TransformerCPI, IIFDTI, and DeepConv-
DTI models. Conversely, the PhyGrAtt performance sig-
nificantly declined.

Additionally, we assessed the models’ performance 
using a ratio-based rotatable bonds (RRB) criterion, as 
explained in "Evaluation approaches" section. The third 
column of Fig.  10a and b illustrates the performance of 
the models when using the RRB datasets.

When we applied the RRB criterion to the DrugBank 
dataset, we observed slight improvements in the perfor-
mance of two graph attention-based models, PhyGrAtt 
and AlphaFoldGrAtts. However, for most of the models, 
there were no significant changes, and in some cases, 
performance even declined. This pattern persisted when 
applying RRB to the KiBA dataset. Much like the Drug-
Bank dataset, the majority of models exhibited no signifi-
cant changes when RRB was applied to the KiBA dataset. 
Notable improvements were observed for the 2DFP-
based model and AlphaFoldGrAtts.

Overall, these results suggest that at least in our set-
tings the number of rotatable bonds seems to have lim-
ited to no impact on model performance.

Fig. 8  Comparison of models across the large (KiBA) dataset



Page 12 of 26Abdollahi et al. Journal of Cheminformatics  (2024) 16:118

The execution time of the models
In addition to the performance of the models, the 
execution time for the training and test phases is of 
utmost importance. Here, we trained the models on 

259,117 samples, tested on 5,819 CTI positive and 
negative samples, and computed the execution time 
for each phase separately. The models were trained and 
tested on NVIDIA A100 SXM4 40 GB GPUs, and the 

Fig. 9  Comparison of models across the mutation-aware dataset

Fig. 10  Performance comparison of eight models over DrugBank and KiBA datasets, under three filtering scenarios: (left) no limitations, (center) 
compounds with ≤ 10 rotatable bonds, and (right) compounds with rotatable bond ratio ≤ 0.184
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execution times for training and inference are reported 
in Table 2.

The models are sorted based on the average execu-
tion time per epoch during the training phase, and the 
numbers are given in seconds. As depicted in Table 2, 
models utilizing pre-trained embeddings, such as the 
BERT-based and UniRep-based models, demonstrate 
the fastest performance. Convolutional neural network-
based models, including DeepConv-DTI, E3FP-based, 
DeepDTA, and DeepCAT, exhibit swift training and 
inference. The third position is occupied by GAT-based 
models, such as PhyGrAtt and AlphaFoldGrAtts, which 
are constructed on graphs of residue (or atom) interac-
tions. The models with the longest execution times are 

the transformer-based models, characterized by a high 
number of computational steps and parameters.

Overall, while the top three models, IIFDTI, Trans-
formerCPI, and DeepConv-DTI, show competitive pre-
diction performance, the execution time for training and 
inference decisively underscores the superiority of the 
DeepConv-DTI model.

Performance improvement through pre‑trained 
embeddings and physicochemical properties
In our previous evaluations, we demonstrated that 
DeepConv-DTI outperforms other models across most 
datasets. As detailed in "Methods" section, this model 
utilizes randomly-initialized trainable embeddings for 
each amino acid, which undergo training in the training 
phase. The trainable property of the embeddings aims to 
modify them to incorporate informative and representa-
tive features crucial for binding. Our prior results across 
the different target representations suggest, however, 
that an initialization based on physicochemical proper-
ties of the aminoacids or on reconstruction (e.g. BERT) 
should be beneficial. This prompted us to modify Deep-
Conv-DTI to initialize the embeddings using normal-
ized physicochemical properties of amino acids instead 
of random values obtained from a uniform distribution 
and named this model Phys-DeepConv-DTI. Addition-
ally, we employed two recently published and widely used 
pre-trained embeddings, ESM-1b [19] and ESM2 [20], as 
protein representations for DeepConv-DTI, naming the 
models esm1b-DeepConv-DTI and esm2-DeepConv-
DTI, respectively.

We independently trained and evaluated the different 
versions of the DeepConv-DTI model across each data-
set ten times to obtain reliable performance measures. 

Table 2  Execution time of the models

Rank Models One Epoch Time 
(seconds)

Inference 
Time 
(seconds)

1 BERT-based 148.7 0.53

2 UniRep-based 169.6 0.57

3 DeepConv-DTI 217.9 1.45

4 E3FP-based 326.4 0.53

5 DeepDTA 450.9 0.49

6 DeepCAT​ 455.6 0.49

7 PhyGrAtt 1464.3 2.37

8 AlphaFoldGrAtts 1633.4 2.91

9 2DFP-based 1723.2 14.7

10 IIFDTI 2427.2 54.0

11 PhyChemDG 23557.2 147.1

12 TransformerCPI 23561.8 148.0

Fig. 11  Comparison of the performance of the DeepConv-DTI model in four scenarios: initializing the trainable embeddings using normalized 
physicochemical properties (Phys-DeepConv-DTI), using randomly-initialized embeddings (the original version of DeepConv-DTI), utilizing ESM-1b 
and ESM-2 as protein representations (esm1b-DeepConv-DTI and esm2-DeepConv-DTI, respectively). The symbols above each bar indicate 
the p-value significance levels when comparing DeepConv-DTI with its other versions
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As illustrated in Fig.  11, Phys-Conv-DTI demonstrates 
significantly better performance than DeepConv-DTI 
and its other versions across most datasets in terms of 
MCC, including warm-start for compounds and targets, 
cold-start for compounds, as well as KiBA and DrugBank 
datasets. Conversely, the value of ESM-1b becomes par-
ticularly apparent when using the cold-start for targets 
dataset, indicating that ESM-1b is a more effective choice 
for predicting interactions between compounds and 
previously unseen targets. In summary, we were able to 
improve the best model based on our systematic evalu-
ation of beneficial compound and target representations 
and network architectures. We believe this approach 
holds great promise for the further optimization of deep 
learning-based CTI prediction models.

Comparison of models using the label reversal 
experiments
The hidden compound bias in a model occurs when it 
predicts the CTI based solely on compound-specific 
clues and patterns, rather than on the desired interaction 
features. This issue has been observed in two recent stud-
ies [21, 22], and Chen et al. [6] proposed a label reversal 
experiment to determine if a CTI prediction model faces 
a similar problem. They created two datasets, GPCR and 
Kinase, based on the GLASS [23] and KiBA databases, 
respectively. In the label reversal scenario, a compound 
present in one class in the training set appears exclusively 
in the opposite class in the test set. Here, we compare 
the top three models alongside various versions of Deep-
Conv-DTI. Figure 12 and Supplementary Fig. S16 present 
the performance of the models on the label reversal data-
set, measured by MCC and F1 score, respectively.

As shown in Fig.  12, DeepConv-DTI (MCC=0.533) 
demonstrates the best performance on the GPCR dataset, 
while IIFDTI (MCC = 0.315) outperforms other models 

on the Kinase dataset. The figure also demonstrates a 
significant decline in model performance on the Kinase 
dataset compared to the GPCR dataset, particularly for 
DeepConv-DTI and its variants. These models perform 
worse in predicting CTIs with reversed labels, yielding 
results below the random prediction baseline, which has 
an MCC of 0.0. Consequently, we analyzed the frequency 
of compounds contributing to negative or positive CTIs 
in the training and test sets of each dataset separately. We 
observed that in the Kinase dataset, a compound appears, 
on average, 44 times during the training phase with either 
a negative or positive label, but only 7 times in the test set 
with the opposite label. In contrast, in the GPCR dataset, 
each compound appears on average once or twice during 
the training phase and once in the test set (Supplemen-
tary Fig. S17).

When a model encounters a compound multiple times 
with a constant output label, its parameters are trained 
to predict that label more confidently when the same 
compound’s features appear in the test set. This makes it 
more difficult for the model to accurately predict a CTI 
containing the compound with a reversed label.

Interestingly, the two transformer-based models, 
TransformerCPI and IIFDTI, achieve better results on 
the Kinase dataset compared to the others. These find-
ings suggest that transformer-based models have a 
greater ability to capture interaction features, rather than 
relying solely on compound features.

Discussion
Although different models and input features exhibit 
varying performances across different datasets, the per-
formance of each model may depend on specific struc-
tural, behavioral, and characteristic features of proteins 
and compounds. Consequently, these features can com-
plement each other and enhance the overall perfor-
mance of a new hybrid model. For example, the features 
captured by AlphaFold represent the target’s struc-
ture, while BERT-based or UniRep-based input features 
encode the amino acid sequence order. Additionally, the 
physicochemical properties of amino acids can describe 
their characteristics such as polarity, hydrophilicity, 
hydrophobicity. Notably, based on our findings, a trans-
former-based model utilized for both compounds and 
targets proves to be one of the most successful. Hence, 
a transformer-based architecture can effectively capture 
informative features from sequential data. On the other 
hand, the structure-based models that utilize AlphaFold 
to predict 3D structures and atoms’ interaction networks 
demonstrate consistent performance across datasets of 
various sizes.

One of the disadvantages of transformer-based mod-
els like TransformerCPI and IIFDTI is the extended Fig. 12  Comparison of models across the label reversal datasets
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training time required, especially for the large aggre-
gated dataset. Based on our findings, these models 
can be efficiently trained and evaluated on small and 
medium datasets. However, regardless of the data-
splitting scenario, the results on the larger datasets 
indicate that they do not surpass other models, espe-
cially convolutional-based models like DeepConv-DTI. 
While the transformer-based models achieve high 
performance in comparison to most models, they may 
not effectively capture global target features as com-
prehensively as the global convolutional-based model, 
DeepConv-DTI. Furthermore, in the case of compound 
descriptors, the representation by 2D atom interaction 
networks, which assigns a vector of chemical and struc-
tural properties to each atom, consistently achieves 
high performance compared to other representations.

Regarding the influence of the rotatable bonds, Deep-
Conv-DTI, IIFDTI, and TransformerCPI display lower 
sensitivity to the rotational bonds of compounds. Con-
versely, the performance of the 2DFP-based model and 
models utilizing GAT layers, such as AlphaFoldGrAtts 
and PhyGrAtt, is notably affected by the presence of 
rotatable bonds. Regardless of the target input features, 
it’s important to emphasize that the method of captur-
ing and refining these features can be more effective 
than the features themselves in predicting CTIs. Our 
study revealed that globally refining target features 
using simple convolutional blocks can be more effec-
tive than complex transformer-based models. Global 
feature capture encodes the characteristics of various 
groups of adjacent residues, leading to more precise 
predictions for mutated targets. Additionally, there 
are multiple CTI models, such as DeepConv-DTI, 
DeepDTA, and IIFDTI, that utilize randomly initial-
ized trainable embeddings. According to our findings, 
the performance of future models employing trainable 
embeddings can be enhanced by initializing them using 
normalized physicochemical properties.

The performance of the models on label reversal data-
sets indicates that transformers, as a neural network 
architecture, are a strong choice due to their ability to 
capture interaction features rather than relying solely on 
compound patterns. In other words, transformers are 
well-suited to mitigating the issue of hidden compound 
bias. Transformer-based models employ a quadratic 
attention mechanism, which requires quadratic memory 
and can be challenging for longer sequences. One poten-
tial solution to this issue is the use of novel transformer-
based models like BigBird. These models replace the 
quadratic attention mechanism with a combination of 
window-based attention, random attention, and selec-
tive global attention, resulting in linear memory require-
ments [24].

In conclusion, it is not only feasible but also advanta-
geous to prefer models that not only predict accurately 
but also operate more efficiently in terms of training and 
inference times. Another crucial factor to consider is the 
memory required for both the parameters of a model and 
its computations. Models that demand less memory and 
exhibit faster processing contribute to decreasing the 
overall cost of resources. In this context, convolutional 
neural networks rely more on the size of kernels than 
on the size of input features. As a result, they can utilize 
fewer parameters. On the contrary, transformers neces-
sitate a considerable number of parameters and involve 
numerous computational steps. With enhanced models, 
such as DeepConv-DTI, we can efficiently screen more 
compounds against disease-relevant targets in a shorter 
timeframe than classical molecular docking workflows.

Methods
Datasets
In this study, four datasets were utilized to compare the 
performance of various models, namely, KiBA, Drug-
Bank, Davis, and D3R datasets.

KiBA: The Kinase Inhibitor Bioactivity dataset (KiBA) 
dataset [25] consists of 52,498 chemical compounds and 
467 kinase targets. It utilizes IC50 values to determine 
the binding affinity between compounds and targets. The 
strength of the binding is represented by the KiBA score, 
where a higher score indicates a lower binding affinity. 
In this study, we adopted a threshold of 3 for the KiBA 
score, categorizing compound-target pairs with scores 
less than or equal to 3 as “hits” and those above 3 as 
“non-binds”. Overall, the KiBA dataset comprises 243,251 
compound-target records, with 79,787 positive samples 
indicating binding and 163,464 negative samples repre-
senting non-binding interactions.

DrugBank: The DrugBank dataset (version 28.03.2022) 
is a comprehensive collection of data that includes vari-
ous information such as the molecular weight of com-
pounds, signal regions of targets, transmembrane regions 
of targets, adverse effects, compound-target interactions, 
compound-compound interactions, and more. The ver-
sion used in this study encompasses 14,624 compounds 
and 4,889 targets. The dataset consists of a total of 21,243 
positive compound-target interactions, indicating bind-
ing between compounds and targets. However, it does 
not contain any negative samples, representing non-
binding interactions.

Davis: The Davis dataset [26] is used to measure the 
binding affinity of compound-target pairs using the 
equilibrium dissociation constant (Kd). In this data-
set, a higher Kd value indicates a lower binding affinity 
between the compound and target. For this study, we 
set a threshold of 10µM to classify the compound-target 



Page 16 of 26Abdollahi et al. Journal of Cheminformatics  (2024) 16:118

pairs. Compound-target pairs with a Kd value less than 
10µM are considered as hits, indicating a binding inter-
action, while those with a Kd value greater than or equal 
to 10µM are classified as ’non-bind’, representing a lack 
of binding. The Davis dataset consists of 72 chemical 
compounds and 442 kinase targets. Overall, the data-
set comprises 31,824 compound-target pairs, with 9,424 
classified as positive samples (hits) and 22,400 as negative 
samples (non-binds).

D3R: The Drug Design Data Resource (D3R) dataset 
comprises data from four grand challenges. The dataset 
contains a total of 2,200 compound-target pairs, consist-
ing of 1,769 positive samples and 431 negative samples. 
The D3R dataset is available at https://​drugd​esign​data.​
org/​about/​datas​ets.

Data preprocessing
Supplementary Fig. S18 presents the histogram depict-
ing the distribution of compounds and targets based on 
the length of the SMILES notations of compounds and 
the number of amino acids, respectively. To ensure a fair 
comparison of models, we excluded targets with more 
than 1400 amino acids and compounds with more than 
350 SMILES characters, based on the observed distribu-
tion. Additionally, it is crucial to exclude targets that do 
not have a valid 3D structure predicted by AlphaFold, as 
well as compounds for which E3FP is unable to obtain 
their 3D fingerprints.

After applying all the aforementioned limitations and 
removing duplicate records, we obtained a final dataset 
consisting of 337,526 unique records, including 240,055 
negative samples and 97,471 positive samples. This com-
bined dataset encompasses 4700 targets and 58,122 
compounds.

The preprocessed Davis dataset consists of two subsets: 
one involving mutated targets and the other involving 
wild-type targets. The dataset contains a total of 3,168 
records, with 1351 positive samples and 1,817 negative 
samples, for the mutated targets subset. For the wild-
type targets subset, there are 25,698 records, with 5,471 
positive samples and 20,227 negative samples. In the 
dataset, there are 335 wild-type kinase targets and 44 
mutated targets. Additionally, the dataset includes a total 
of 72 compounds. The preprocessed D3R dataset com-
prises 467 records of compound-mutated target interac-
tions, with 461 positive samples and 6 negative samples. 
Additionally, the dataset includes 1733 records involv-
ing wild-type targets, with 1308 positive samples and 
425 negative samples. The preprocessed KiBA dataset 
comprises 233,911 samples, including 157,295 negative 
samples and 76,616 positive samples. Finally, the pre-
processed DrugBank dataset contains 17,207 samples, 
but it lacks negative samples. Therefore, in the next part, 

we will discuss how we generated negative samples for 
this dataset.

Gold‑standard Datasets
We assessed different models using our gold-standard 
datasets, including the large aggregated datasets, muta-
tion-aware dataset, rotational bonds-aware dataset, and 
separate datasets with varying sizes. Each gold-standard 
dataset is described in the following sections separately. 
The datasets are derived from four widely used databases: 
KiBA, DrugBank, Davis, and D3R. The details about each 
dataset can be found in "Datasets" section. Additionally, 
since DrugBank lacks negative samples, we have devel-
oped an approach to generate them using the Tanimoto 
distance between compounds, as described in the follow-
ing section.

Negative samples generation
Most previous studies have attempted to randomly assign 
compound-target pairs that have not been observed in 
the positive samples as negative samples. In this study, we 
aim to select compound-target pairs that do not exist in 
the DrugBank dataset and are as dissimilar as possible to 
the positive pairs.

Let’s assume that a set of m compounds, denoted 
as Ct : (d1, d2, · · · , dm) , bind to a given target t, while 
the remaining compounds are included in another set, 
C ′
t :

(

d′1, d
′

2, · · · , d
′
n

)

 . For each compound d′i in the C ′
t 

set, we calculated its Tanimoto distance with all the 
compounds in the Ct set. The minimum distance value 
obtained represents the distance of d′i from the Ct set. 
Ultimately, we select k compounds from the C ′

t set that 
have the maximum distance to the Ct set. Finally, we form 
pairs of target t with each of these k compounds to create 
a negative set. We then repeat the aforementioned steps 
for all targets in the DrugBank dataset (Fig. 13).

Large‑aggregated datasets
The large aggregated dataset was created by combining 
the KiBA, DrugBank, Davis, and D3R datasets. We then 
applied warm-start splitting scenarios for targets and 
compounds to ensure consistent distribution between 
the training and test sets. Additionally, we employed 
cold-start splitting scenarios to challenge the models with 
new targets or compounds that they had not encountered 
in the training phase. Figure  14 illustrates the process 
of generating the cold-start and warm-start datasets for 
compounds and targets, with detailed information pro-
vided in Evaluation approaches section.

(1)k max
i=1..n

(

min
j=1..m

[

1− Tanimoto
(

dj , d
′

i

)]

)

.

https://drugdesigndata.org/about/datasets
https://drugdesigndata.org/about/datasets
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Rotational bonds‑aware datasets
A compound can possess zero or more rotatable bonds, 
which involve the overlapping of atomic orbitals. The 
rotation of these bonds is facilitated by the continuous 
rearrangement of electron density within the bonding 
region. Given that compounds with 10 or fewer rotat-
able bonds are highly likely to demonstrate favorable oral 
bioavailability in rats [27], we established a threshold by 
considering a maximum of 10 rotatable bonds to filter 
our datasets. Subsequently, we retained compounds that 
adhered to this criterion while excluding those that sur-
passed it. After applying this filtering process, our dataset 

is reduced to 282,971 records, forming what we refer to 
as the Limited-Rotatable-Bonds (LRB) dataset. The fre-
quency distribution of compounds based on their num-
ber of rotatable bonds is presented in Supplementary Fig. 
S1. Notably, the majority of compounds within the data-
set possessed between 0 and 10 rotatable bonds, with the 
highest recorded number of rotatable bonds reaching 95. 
It is plausible that compounds with 10 rotatable bonds 
out of a total of 19 may exhibit fewer interaction points 
and a more constrained conformational space compared 
to compounds with 10 rotatable bonds out of a total of 
100 bonds. Based on the explanation mentioned earlier, 

Fig. 13  The process of generating negative samples for the DrugBank dataset

Fig. 14  The process of cold-start and warm-start splitting for compounds and targets
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in addition to the LRB dataset, we constructed the Ratio-
based Rotatable Bonds (RRB) dataset. The RRB dataset 
is derived from the rotatable bond fraction (RBF) of the 
compounds. The RBF value is computed by dividing the 
number of rotatable bonds by the total number of bonds 
in a compound. To ensure a comparable dataset to the 
LRB dataset, we adjusted the number of records in the 
RRB dataset to match that of the LRB dataset. By set-
ting the threshold of the RBF value to 0.184, we obtained 
a dataset consisting of 282,445 records (Supplementary 
Fig. S2). Figure 15 illustrates the process of creating LRB 
and RRB datasets from the DrugBank and KiBA datasets.

Mutation‑aware dataset
One of the most predominant mechanisms underlying 
the development of treatment resistance in cancer cells 
and viruses is the emergence of mutations in the target 
protein [28]. Regardless of the type of mutation, a sin-
gle point mutation in the amino acid sequence of a tar-
get protein can be sufficient to provoke drug resistance. 
Additionally, the relevance of these findings extends to 
genetic diseases, many of which lack effective therapies 
[29]. The discovery of new molecules that can restore 
the impaired protein function due to mutations is criti-
cally needed. Hence, accurate learning of the structure 
and functions of the wild-type proteins is of paramount 
importance to effectively measure and predict the bind-
ing status of compounds towards mutated versions of 
sequences. By employing this approach, we have appro-
priately configured the dataset to include training data 
with records of wild-type targets and test data with 
records of mutant targets (Fig. 16). We are interested in 
identifying models that can effectively capture informa-
tive features of targets and determining which target 

input features can serve as representative vectors for pre-
dicting compound-mutated target interactions.

To assess the similarity between the wild-type targets in 
the training set and the mutated targets in the test set, we 
employed a normalized alignment-based similarity score 
based on the Needleman-Wunsch algorithm. The bub-
ble chart in Fig.  17 illustrates the 10 wild-type proteins 
most similar to 54 mutated targets in the mutation-aware 
dataset. Each row displays the UniProt ID of the wild-
type proteins that are most similar to a specific mutated 
protein. The size of the ovals indicates the frequency of a 
wild-type protein’s occurrence in the training set, while 
the color of the ovals represents the degree of similarity 
between the wild-type and mutated proteins, with darker 
colors indicating higher similarity. The columns in the 
figure are sorted in descending order of similarity. As 
depicted, the first column of the bubble chart shows that 
for each mutated target in the test set, there is at least one 
wild-type target with a similarity score greater than 0.95. 
The training set contains a total of 65,611 compound-
target records, representing 20% of the data, where the 
wild-type targets share more than 25% similarity with the 
mutated targets in the test set.

Input features
Input features of compounds
One-hot vectors: The one-hot vector representation is a 
widely used method for encoding each character of the 
SMILES notation. Given that the SMILES notation con-
sists of 98 unique characters, we construct a 98-dimen-
sional vector for each character. Each dimension in the 
vector corresponds to a specific SMILES character, with 
a value of 1 indicating the presence of that character and 
0 for all other dimensions. In our datasets, the maximum 
length of a SMILES sequence is 348 characters. To handle 

Fig. 15  The process of generating the LRB and RRB datasets
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Fig. 16  The mutation-aware dataset: the models are trained on interactions between compounds and wild-type targets, and evaluated 
on interactions between compounds and mutated targets

Fig. 17  The mutation-aware dataset includes 54 mutated targets. Each row of the bubble plot represents a mutated protein, while the columns 
correspond to the 10 most similar wild-type proteins in the dataset, sorted in descending order of similarity. The size of the bubbles indicates 
the prevalence of the wild-type proteins in the training set, and the color intensity reflects the similarity score
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sequences of shorter lengths, we employ zero-padding 
techniques. As a result, we obtain a matrix of size (348, 
98), which is then fed into convolutional neural network 
(CNN) layers and FC layers to produce a 128-dimen-
sional representative vector for compounds.

Trained embeddings: Smi2Vec generates embeddings 
by first encoding each symbol in the SMILES notation 
as a one-hot representation, and then training a linear 
classifier to predict the original symbol, similar to the 
Word2Vec approach. One key advantage of Smi2Vec is 
its broader perspective - it doesn’t just treat sequences 
as language sentences, but also treats other symbols like 
’ @ ’, ’[’, ’]’, and others as “separate biological terms”. This 
unique approach enables Smi2Vec to create meaningful 
embeddings even for special cases like chirality. There-
fore, the Smi2Vec [30] technique captures the specific 
characteristics of each letter in a SMILES notation, gen-
erating a matrix for a given sequence. The rows of this 
resulting matrix then serve as a lookup table for embed-
dings. The IIFDTI model utilizes the SMILES notation 
of a compound to generate a matrix of 100-dimensional 
Smi2Vec embeddings, which serves as one of the repre-
sentations for compounds.

2D drug fingerprints (2DFP): We employed the con-
catenation of four widely used 2D drug fingerprints, 
namely Morgan, MACCS, RDKit-2D, and AtomPair 
fingerprints, with lengths of 1024, 167, 1024, and 1024, 
respectively. These fingerprints capture various aspects 
of the compounds, including atom pair information, 
encoded circular radius-2 substructure information, and 
global pharmacophore information. Consequently, our 
compound input features comprise a total of 3239 dimen-
sions. To extract informative features, the 2DFP-based 
features underwent FC layers, resulting in a 128-dimen-
sional vector as a representative compound vector. The 
DeepConv-DTI model also employs a Morgan drug fin-
gerprint vector with a dimensionality of 2048.

3D drug fingerprints (E3FP): E3FP [31] captures 
the 3D conformers of compounds by defining spheres 
of varying radii. These spheres not only consider bond 
types and connectivity details but also incorporate the 
3D positions of atoms. The process begins with small 
spheres containing a single atom and gradually expands 
them to include neighboring positions and connectivity 
details. This iterative process continues until the sphere 
encompasses the entire compound. Consequently, the 
E3FP drug fingerprint generates multiple binary vectors 
that describe the structure and atom descriptors of vari-
ous conformers. Dimensionality reduction can be applied 
to the 3D drug fingerprints using bitwise operators if 
desired. In this study, we generated a 2048-dimensional 
vector for each conformer. We utilized the default con-
figuration of the E3FP model, which allows a maximum 

of 3 conformers per compound. This choice is recom-
mended in the literature for improved accuracy. There-
fore, for each compound, we obtained a matrix of size (3, 
2048), which was subsequently fed into a CNN layer and 
a linear layer to obtain a 128-dimensional representative 
compound vector.

2D atoms interaction network: The 2D atoms inter-
action network was constructed using the RDKit tool, 
which allowed us to extract the adjacency matrix rep-
resenting the graph of atom interactions for each com-
pound. To utilize graph-based neural networks such 
as GCN and GAT layers, it is necessary to assign an 
initial embedding vector to each node (atom) in the 
graph. These initial embeddings can be represented 
as one-hot vectors or atom characteristic vectors. For 
this study, we utilized 34-dimensional vectors as ini-
tial embeddings for each atom in the interaction graph. 
These dimensions capture various features of the atoms, 
including (i) atom type (C, N, O, F, P, S, Cl, Br, I,  other), 
represented as a one-hot vector with 10 dimensions, 
(ii) atom degree, which indicates the number of car-
bons attached to the atom (ranging from 0 to 6), repre-
sented as a 7-dimensional one-hot vector, (iii) Formal 
charge represents the electric charge associated with 
an atom and is determined by considering the number 
of shared and non-bonding valence electrons. It is rep-
resented as a binary value, indicating the presence or 
absence of an electronic charge, (iv) hybridization type 
(SP,  SP2,  SP3,  SP3D,  SP3D2,   other), which describes 
the molecular geometry, angles, etc., represented as a 
6-dimensional one-hot vector, (v) chirality, with a value 
of 1 indicating a possible chiral center and 0 otherwise, 
(vi) radical atoms, with a value of 1 indicating the pres-
ence of at least one unpaired electron and 0 otherwise, 
(vii) aromatic, with a value of 1 indicating membership 
in an aromatic ring and 0 otherwise, (viii) absolute con-
figuration (R or S), describing the spatial arrangement of 
atoms, represented as a two-dimensional one-hot vector, 
and (ix) the number of hydrogen atoms attached (ranging 
from 0 to 4), represented as a 5-dimensional one-hot vec-
tor. By concatenating all the one-hot vectors and binary 
values, we obtained a final 34-dimensional vector rep-
resentation for each atom in the interaction graph. The 
TransformerCPI model utilizes a GCN and we utilize 
Graph Attention v2 (GATv2) [32] and FC layers to extract 
a 128-dimensional compound representative vector in 
the AlphaFoldGrAtts and PhyGrAtt models.

Input features of targets
One-hot vectors: Since we have 20 unique amino acids, 
we construct a 20-dimensional vector for each amino 
acid. Each dimension in the vector corresponds to a spe-
cific amino acid, with a value of 1 indicating the presence 
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of that amino acid and 0 for all other dimensions. In our 
datasets, the maximum number of amino acids in a target 
sequence is 1400. To handle sequences of shorter lengths, 
we employ zero-padding techniques. As a result, we 
obtain a matrix of size (1400, 20), which is then fed into 
convolutional and FC layers to produce a 128-dimen-
sional representative vector for the target.

Physicochemical properties: The physicochemical 
properties of amino acids are represented as 512-dimen-
sional vectors obtained from AAindex [33]. Prior studies 
have demonstrated that incorporating AAindex features 
as physicochemical properties of amino acids can effec-
tively predict cancer subtypes [18] and protein-protein 
interactions [34] with promising performances. To 
reduce the dimensionality, we employed Principal Com-
ponent Analysis (PCA), reducing it to 20 dimensions. 
Given that the maximum number of amino acids for tar-
get sequences is 1400, we obtained a (1400, 20) matrix as 
the target input feature. These features were then fed into 
convolutional and FC layers to further reduce the dimen-
sionality to a 128-dimensional vector, serving as the rep-
resentative target vector.

K-mers representation: One of the most popular 
methods for analyzing sequence-based input features is 
extracting K-mers using a sliding window approach over 
the amino acid sequence. Once the K-mers are extracted, 
a language model such as Skip-gram can be employed to 
obtain Word2Vec embeddings for the K-mers. To obtain 
the representative features for the target, Transformer-
CPI utilizes a positional transformer-encoder block.

Trained embeddings: Prot2Vec [35] generates embed-
ding vectors through the training of a Skip-gram neural 
network on non-overlapping sequences of 3-mers within 
each protein. The obtained embeddings for each 3-mer 
subsequently serve as an embedding lookup table. These 
embeddings have proven effective in the classification 
of protein families. A protein family consists of proteins 
sharing similar functions or structures, often linked 
through evolutionary relationships. Within the IIFDTI 
model, the amino acid sequence is employed to construct 
100-dimensional Prot2Vec embeddings. This matrix 
acts as one of the representations for proteins within the 
encoder-decoder block.

UniRep-based features: The UniRep-based input fea-
tures are derived from a multiplicative long short-term 
memory (mLSTM) model [36], which has been trained 
on a vast dataset comprising approximately 25 million 
amino acid sequences from the UniRef50 clusters of Uni-
Prot. The primary objective of the mLSTM model is to 
predict the next amino acid in a sequence based on the 
preceding context. Alley et al. conducted an evaluation of 
their model on various tasks, including protein secondary 
structure, evolutionary information, semantic similarity, 

functional annotations, and stability predictions. In this 
study, a UniRep-based embedding with 1900 dimensions 
is processed through a series of FC layers to extract a 
128-dimensional representative vector for the targets.

BERT-based features: The BERT-based input features 
are obtained from a semi-supervised learning model 
called TAPE [37], which has been specifically designed 
and evaluated for predicting a wide range of tasks in 
protein analysis. These tasks include protein secondary 
structure prediction, contact prediction, remote homol-
ogy detection, stability estimation, and fluorescence land-
scape prediction. The TAPE model has been trained on 
the extensive Pfam database, which comprises 31 million 
protein domains. The Pfam database organizes amino 
acid sequences into families based on their evolutionary 
relationships. For each input amino acid sequence, the 
TAPE model generates a 768-dimensional embedding, 
which is then processed through a series of FC layers to 
obtain a 128-dimensional representative vector for the 
target.

3D structures: The 3D structures of targets can 
be extracted using the AlphaFold model [38]. Recent 
research has demonstrated that the 3D structures of 
proteins obtained from AlphaFold provide informative 
features for various aspects of protein functionality and 
stability [39–41]. One of the main advantages of Alpha-
Fold is its ability to predict the 3D structure of proteins 
for which the structure is unknown. However, this is not 
the only advantage. AlphaFold can also be used for pro-
teins with available 3D structures in the Protein Data 
Bank (PDB). The PDB files can occasionally exhibit miss-
ing amino acids. There are multiple reasons why a PDB 
file may contain missing amino acids.

In some cases, certain regions of proteins may not be 
resolved with sufficient clarity using X-ray crystallogra-
phy or cryo-electron microscopy techniques. Addition-
ally, incomplete sequencing can lead to missing amino 
acids. Therefore, AlphaFold predictions can help in pre-
dicting the structure of these missing amino acids. To 
illustrate this benefit of the AlphaFold model, we com-
pared the recorded 3D structure of the Phenylalanine-
4-hydroxylase (PH4H) protein (RCSB PDB ID: 6HYC) 
with its predicted 3D structure obtained from AlphaFold. 
Supplementary Fig. S19-a shows the amino acid sequence 
of the protein, with the red bold characters representing 
the missing amino acids in the 6HYC PDB file. As shown 
in supplementary Fig. S19-b, the predicted and actual 
3D structures of the protein overlap, demonstrating 
the accuracy of the AlphaFold prediction. The blue part 
of the figure represents the AlphaFold prediction, the 
brown part represents the actual structure, and the gray 
parts represent the predicted structures of the missing 
amino acids. The high accuracy of the AlphaFold model 
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in predicting protein 3D structures has motivated us to 
explore its utility in the field of CTI prediction. Based on 
the 3D structure of proteins obtained from AlphaFold, we 
extracted the coordinates of atoms and amino acids. Our 
focus in this case was on identifying the chemical con-
tacts between the amino acids. To achieve this, we uti-
lized the Residue Interaction Network Generator (RING 
3.0) tool [42], which is capable of generating a weighted 
graph of residue interactions based on the angstrom dis-
tances between atoms in three-dimensional space. Sup-
plementary Fig. S19-c displays the residue interaction 
network of the PH4H protein, which has been generated 
using RING. The edges of the graph are assigned weights 
that reflect the strength of the interactions. RING identi-
fies and assigns dissociation energies to various types of 
bonds, including disulfide bridges, ionic bonds, hydrogen 
bonds, π-Cation, π-π stack, and Van der Waals interac-
tions. The dissociation energies assigned are 167, 20, 17, 
9.6, 9.4, and 6, respectively. The different bond types have 
varying dissociation energies, hence the weighted graph 
representation. We utilized a two-layer GATv2 model to 
learn the weighted graph features of a target. The learned 
features were then concatenated and passed through FC 
layers to obtain a 128-dimensional representative for the 
target in the AlphaFoldGrAtts model.

Models
In this study, our objective is to conduct a comprehen-
sive comparison of different models based on structure 
(or sequence) for CTI prediction. Given our focus on the 
efficacy of protein and compound input features, we have 
excluded relational-based models that rely on diverse 
data sources such as compound-compound similarity 
networks and protein-protein interactions. These models 
do not align with the primary objective of our study.

There exist several state-of-the-art models for predict-
ing CTIs, including DeepDTA, DeepCAT, Transformer-
CPI, IIFDTI, and DeepConv-DTI. These models employ 
varied input features for compounds and targets, in addi-
tion to utilizing distinct types of neural network blocks. 
DeepDTA [7] employs a character-level embedding layer 
to generate unique embeddings for each character in the 
SMILES notation. Subsequently, these embeddings are 
passed through three convolutional layers, mirroring a 
similar process for proteins. Ultimately, the model pro-
cesses these captured representations through FC lay-
ers (Supplementary Fig. S20). DeepCAT [18] represents 
another model designed specifically for predicting can-
cer subtypes. In this research, we leverage the identical 
input features involving amino acid sequences and the 
CNN block of DeepCAT to handle protein representa-
tion. However, for the compound component, we adopt 

a similar approach, utilizing one-hot vector representa-
tion for the characters within the SMILES notation (Sup-
plementary Fig. S21). TransformerCPI [6] represents a 
model that extracts the atom interaction network from 
compounds, acquiring atom input features through 
GCN. Additionally, it captures target input features by 
extracting k-mers and employing the Word2Vec tech-
nique. Ultimately, it deploys encoder and decoder blocks 
within transformers to effectively capture the interwo-
ven features of compounds and proteins (Supplemen-
tary Fig. S22). IIFDTI [5] constructs a molecular graph 
from the SMILES string, anchoring initial feature vec-
tors, which encompass physicochemical properties, to 
each atom within the graph. This model comprises two 
distinct feature extraction blocks and a consolidated bidi-
rectional encoder-decoder block. The autonomous fea-
ture extractors, manifested as a multi-layer GAT network 
and a CNN, take the molecular graph and the protein 
sequence’s Word2Vec-embedded 3-mers, respectively. 
The bidirectional encoder-decoder block follows an 
architecture similar to the original Transformer proposed 
by Vaswani et  al. [43]. However, in this scenario, each 
block encompasses a one-dimensional convolutional 
layer and a gated linear unit. The input features encom-
pass SMILES notations, enriched through a pre-trained 
Smi2Vec model [30], alongside the sequence of over-
lapping 3-mers for the amino acid sequence, bolstered 
by a pre-trained Prot2Vec model [35] (Supplementary 
Fig. S23). DeepConv-DTI [8] employs the amino acid 
sequence and the binary Morgan drug fingerprint with a 
radius of 2 as its input features. This model integrates two 
distinct feature extraction blocks: one for compounds 
and another for targets. The outcomes of these blocks 
are joined together, subsequently traversing final FC lay-
ers to predict interactions. The target’s feature extractor 
adopts a trainable embedding for every amino acid in the 
protein sequence, followed by global one-dimensional 
convolutional layers. These global convolutional layers 
capture enlightening features using windows of assorted 
scales (Supplementary Fig. S24).

In addition to the five aforementioned state-of-the-
art models, we devised seven additional models, each 
grounded on distinct input features. For each of these 
models, we selected the most fitting neural network 
components. To determine the optimal hyperparam-
eters for the models, we employed a subset comprising 
10% of the entire dataset as the validation set. In the 
subsequent subsections, we will elucidate each of these 
models individually. For each layer of the models, drop-
out and batch normalization techniques are employed 
to mitigate issues such as exploding gradients and over-
fitting. Table 1 and supplementary Fig. S20-S29 provide 
a comprehensive overview of the model’s architecture.
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Random Forest
We generated one-hot vectors to represent the atoms 
of compounds. Simultaneously, for the protein side, 
we depicted each amino acid using its corresponding 
physicochemical properties. Afterward, the vectors 
are concatenated. Lastly, we applied PCA to extract 32 
principal components from the merged vectors. These 
resultant vectors were then fed into a random forest 
classifier.

AlphaFoldGrAtts
The AlphaFoldGrAtts model operates by taking the 2D 
atoms interaction network of compounds and assigning 
a 34-dimensional vector to each atom (as described in 
"Input features of compounds" subsection). Simultane-
ously, it extracts the weighted residue interaction graph 
utilizing AlphaFold and RING methods and subse-
quently assigns 20-dimensional vectors to each amino 
acid. These vectors represent the amino acid’s physico-
chemical properties derived from PCA (as described in 
"Input features of targets" subsection).

A graph G = (V ,E, F) consists of nodes 
V = {1, · · · , n}, edges E ⊆ V × V , where 

(

i, j
)

∈ E 
denotes an edge from a node i to a node j, and features 
F = {f1, · · · , fn}, where fi ∈ R

34 ( fi ∈ R
20 ) is the initial 

features vector of atom (amino acid) i. The significance 
of the features of the neighbor node j with respect to 
node i is defined by a scoring function:

where a and W are trainable matrices and ‖ denotes con-
catenation. Then, the attention function will be calcu-
lated based on the normalization across all neighbors 
k ∈ Ni using the softmax function:

Then, every node updates its feature vector by receiving 
messages from its neighboring nodes.

The phase of updating the feature vectors involves not 
only updating the vector members but also adjusting the 
vector dimensions. The entire process of updating the 
feature vectors, as described in Eq. 2-4, is referred to as 
the GATv2 model. GATv2 represents a novel graph atten-
tion mechanism that addresses the limitation of static 
attention and extends the attention mechanism to align 

(2)e(fi, fj) = aTLeakyRELU(W .
[

fi�fj
]

),

(3)αij = softmax(e(fi, fj)) =
e(fi, fj)

∑

k∈Ni
exp(e(fi, fk))

.

(4)f ′i = σ





�

j∈Ni

αij .Wfj



.

with the dynamic context. Hence, the feature vectors will 
be updated using GATv2.

where F ′
= {f ′1, · · · , f

′
n} is the updated feature vectors, 

f ′i ∈ R
8, and n = 1400 denotes the maximum number of 

amino acids in a protein sequence. To further update the 
features based on the most recent version of the updated 
feature vectors, we employ an additional layer of GATv2.

where F ′′
= {f ′′1 , · · · , f

′′
n } and f ′′i ∈ R

4 . Subsequently, 
the updated feature vectors are concatenated to form a 
5600-dimensional vector. This vector is then fed through 
multiple FC layers to generate a 128-dimensional target 
representative vector. Similarly, for the compound por-
tion, AlphaFoldGrAtts applies a similar process, utilizing 
two GATv2 layers and several FC layers to extract a com-
pound representative vector. Ultimately, these two repre-
sentative vectors are concatenated and further processed 
through additional FC layers. The output layer comprises 
two neurons that represent the probability of the com-
pound-target interaction. Subsequently, a cross-entropy 
loss function is defined.

where y and y′ represent the actual and predicted out-
put values, respectively. The AlphaFoldGrAtts model 
minimizes this loss function using a stochastic gradient 
descent (SGD) optimizer.

PhyGrAtt
Similar to the AlphaFoldGrAtts model, PhyGrAtt employs 
a process to extract 34-dimensional feature vectors for 
compounds. It accomplishes this by utilizing two GATv2 
layers (as described in Eq. 5 and 6) and multiple fully con-
nected layers to capture the representative vectors. How-
ever, in contrast to the protein side that uses GATv2 layers, 
the PhyGrAtt model attributes physicochemical proper-
ties ( fi ∈ R

20 ) to each amino acid. These features are then 
directed through a 2D convolutional layer followed by a 
max pooling layer for further processing.

where F = {f1, · · · , fn} denotes the input features, p = 1 
and s = 1 denote the amount of padding and stride, and 
Kc1 = (603, 8) and kMP1 = (201, 4) are the kernel size of 
the convolutional and the max pool layers, respectively. 
To further reduce the dimensionality of the feature 
matrix ( F ′

∈ R
600×12 ), we incorporated additional 2D 

(5)
(

V ,E, F ′
)

= GATv2(V ,E, F),

(6)
(

V ,E, F ′′
)

= GATv2
(

V ,E, F ′
)

,

(7)L
(

y′, y
)

= −
[

y log y′ +
(

1− y
)

log
(

1− y′
)]

,

(8)F ′
= MaxPool2D

(

Conv2D
(

F , kc1 , p
)

, kMP1 , s
)

,
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convolutional and max pooling layers with kernel sizes of 
Kc2 = (303, 7) and kMP2 = (101, 4) , respectively.

Passing the F ′ features through the above 2D con-
volutional and max pooling layers yields a matrix 
F ′′

∈ R
200×5 . This matrix is subsequently flattened and 

transformed into a 1000-dimensional vector, which is 
then propagated through several FC layers to derive the 
representative features of the target. Lastly, the repre-
sentative vectors of targets and compounds are merged 
and inputted into multiple FC layers. PhyGrAtt formu-
lates a cross-entropy loss function and aims to minimize 
it using an SGD optimizer.

The E3FP‑based model
The process of extracting the target representative vector 
closely resembles that of the PhyGrAtt model. It employs 
two sets of 2D-CNN blocks coupled with max pooling 
layers. Additionally, as elaborated in "Input features of 
compounds" subsection, the E3FP-based model extracts 
drug fingerprints from various potential conformers. 
These drug fingerprints are then subjected to a 2D CNN 
and max pooling layers.

where F ∈ R
3×2048 is the 3D drug fingerprints matrix, 

p = 1 and s = 1 denote the amount of padding and 
stride, and Kc = (3, 501) and KMP = (3, 5) are the ker-
nel size of the convolutional and the max pool layers, 
respectively. Subsequently, the output of the max pool-
ing layer, denoted as F ′

∈ R
310 , is inputted into an FC 

layer to extract the 128-dimensional compound vector. 
Ultimately, the representative vectors of both targets and 
compounds are concatenated and passed through multi-
ple FC layers. The model employs an SGD optimizer to 
minimize a cross-entropy loss function.

The 2DFP‑based model
This model accepts a 3239-dimensional vector composed 
of four different drug fingerprints: Morgan, MACCS, 
RDKit-2D, and AtomPair. The vector is then passed 
through three FC layers to obtain the compound repre-
sentative vector ( F ′′′

∈ R
128).

where Wci and bci are the weight matrices and biases, 
respectively. Similar to PhyGrAtt and the E3FP-based 

(9)F ′′
= MaxPool2D

(

Conv2D
(

F ′, kc2 , p
)

, kMP2 , s
)

.

(10)F ′
= MaxPool2D(Conv2D(F , kc, p), kMP , s),

(11)

F ′
= RELU

(

Wc1F + bc1
)

,Wc1 ∈ R
2048×3239, bc1 ∈ R

2048,

F ′′
= RELU

(

Wc2F
′
+ bc2

)

,Wc2 ∈ R
512×2048, bc2 ∈ R

512,

F ′′′
= Wc3F

′′
+ bc3 ,Wc3 ∈ R

128×512, bc3 ∈ R
128,

models, the 2DFP-based model utilizes the physico-
chemical properties of amino acids as input features and 
feeds them into convolutional and max pooling layers to 
derive a 128-dimensional target representative vector. 
The combined vector resulting from the concatenation 
of target and compound representative vectors is then 
passed through FC layers. The weight matrices and train-
able parameters are updated using an SGD optimizer to 
minimize a cross-entropy loss function.

The BERT (and UniRep)‑based models
The compound side of both models, similar to the 
2DFP-based model, relies on a 3239-dimensional vector 
obtained by concatenating four distinct drug fingerprints. 
The process of obtaining a 128-dimensional compound 
representative vector is identical to that of the 2DFP-
based model. Regarding the protein side, we employed a 
transfer learning-based approach named TAPE to extract 
features from amino acid sequences. As implied by their 
names, the UniRep-based model employs a language 
model, UniRep, trained on 25 million sequences, while 
the BERT-based model employs a language model, BERT, 
trained on 31 million sequences. The TAPE tool yields 
1900- and 768-dimensional embeddings for the UniRep-
based and BERT-based models, respectively. These 
embeddings are subsequently passed through a series 
of FC layers. Similar to the other models, we employed 
the SGD optimization algorithm to minimize the cross-
entropy loss function.

PhyChemDG
This model is an adapted version of TransformerCPI. 
In this instance, we substituted the Word2Vec-based 
embeddings of the extracted k-mers with 20-dimensional 
physicochemical properties of amino acids. As a result, 
all other configurations, such as the GCN block for com-
pounds and the encoder-decoders of the transformer, 
remain consistent with the TransformerCPI model.

Evaluation approaches
Warm-start for compounds: Considering the high cost 
of drug development and the need for increased safety, 
it is valuable to explore the utilization of existing com-
pounds that have already received FDA approval for 
new diseases [1]. This approach, known as drug repur-
posing, allows for the repurposing of existing com-
pounds for different targets. In such cases, the training 
and test sets consist of shared compounds. To maintain 
consistent compound distribution between the train-
ing and test sets, we partitioned the compound-target 
records into 10 equal-sized groups (Fig.  14). During 
each iteration, one group is utilized as the test set, 
while the remaining groups are concatenated to form 
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the training set. This systematic approach guarantees 
that the distribution of compounds remains unaltered 
between the training and test sets.

Warm-start for targets: In this experimental set-
ting, the distribution of targets in the test set aligns 
with that of the training set. Consequently, the models 
are exposed to target features that have already been 
encountered during the training phase. Hence, the 
models become familiar with the structure and charac-
teristics of the targets during the prediction phase.

Cold-start for compounds: Finding models capable 
of identifying potential targets that may interact with 
newly developed compounds is of paramount impor-
tance. In the cold-start scenario for compounds, the 
dataset is divided into training and test sets, with the 
test set containing compounds that did not appear 
during the training phase. To achieve this, we initially 
sorted the dataset in descending order based on the 
number of records for each compound. We then create 
10 empty groups and begin assigning the compound-
target records to the groups. We start by assigning the 
compound-target records of the most frequent com-
pound to the first group, followed by the second most 
frequent compound to the second group, and so on 
until we reach the 10th group. Once the compound-
target records of the 10th most frequent compound 
are assigned to the 10th group, we start the assign-
ment process again from the first group (Fig. 14). Since 
the total dataset size is 337,526, we set a threshold of 
34,000 for each group. Therefore, we fill each group 
until the threshold of 34,000 records is reached.

Cold-start for targets: The technique employed for 
the cold-start for targets scenario is similar to the cold-
start for compounds. However, in this case, we utilize 
records of targets instead of compounds. The goal is to 
determine which models are capable of capturing tar-
get features effectively, enabling accurate prediction 
of compound-target interactions for unseen targets. 
The concept of employing diverse splitting scenarios 
has been applied in various studies, including T-cell 
receptor specificity [44] and knowledge graph-based 
CTI [16] prediction models. In cold-start splitting sce-
narios, it’s important to consider the frequency of tar-
gets and compounds in the dataset. We utilized 10-fold 
cross-validation to evaluate the models, and with over 
300,000 compound-target records, each fold’s size 
needed to be approximately 30,000 to maintain equal 
fold sizes. Supplementary Fig. S30 displays histograms 
depicting the frequency of different compounds and 
targets. As shown in the figure, the highest occurrence 
of a target and a compound in the large aggregated 
dataset is 6,174 and 3,933, respectively.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13321-​024-​00913-1.

Additional file 1. Supplementary information.

Author contributions
S.A., S.B., and S.W.G. conceptualized the work. S.B. and S.W.G. supervised the 
work. S.A. designed and implemented the models and aggregated the data-
sets. S.A. and D.P.S. modified and executed the models on various datasets. S.A. 
and S.B. wrote the main manuscript text and prepared the figures. S.W.G., U.P., 
D.P.S., M.B., N.C.L., and W.H. improved the manuscript text. S.W.G., M.B., N.C.L., 
and W.H. provided data and valuable insights into the model input features. All 
authors reviewed and approved the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. This research 
was supported by a grant from HAMBURG MACHT KINDER GESUND E.V. for 
S.A., DFG SFB 1192 project A1 for D.S. and U.P., and DFG FOR 5068 for S.B.

Availability of data and materials
All data are freely available at https://​imsb.​s3.​baiome.​org/​pub/​Datas​ets.​zip.

Code availability
The source code of this study is available at https://​github.​com/​sabdo​llahi/​
CTI_​Compa​risons.

Declarations

Competing interests
The authors declare no conflict of interests.

Author details
1 Institute of Medical Systems Biology, University Medical Center Hamburg-
Eppendorf, Hamburg 20251, Germany. 2  III. Department of Medicine, 
University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany. 
3 University Children’s Research, UCR@Kinder-UKE, University Medical Center 
Hamburg-Eppendorf, Hamburg 20251, Germany. 4 Hamburg Center for Trans-
lational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 
Hamburg 20251, Germany. 5 Center for Biomedical AI, University Medical 
Center Hamburg-Eppendorf, Hamburg 20251, Germany. 

Received: 10 April 2024   Accepted: 10 October 2024
Published: 28 October 2024

References
	1.	 Pushpakom S, Iorio F, Eyers PA, Escott KJ et al (2018) Drug repurpos-

ing: progress, challenges and recommendations. Nat Rev Drug Discov 
18(1):41–58. https://​doi.​org/​10.​1038/​nrd.​2018.​168

	2.	 Bowes J, Brown AJ, Hamon J, Jarolimek W et al (2012) Reducing safety-
related drug attrition: the use of in vitro pharmacological profiling. Nat 
Rev Drug Discov 11(12):909–922. https://​doi.​org/​10.​1038/​nrd38​45

	3.	 Hopkins AL (2009) Predicting promiscuity. Nature 462(7270):167–168. 
https://​doi.​org/​10.​1038/​46216​7a

	4.	 Sydow D, Burggraaff L, Szengel A, Van Vlijmen HWT et al (2019) Advances 
and challenges in computational target prediction. J Chem Inf Model 
59(5):1728–1742. https://​doi.​org/​10.​1021/​ACS.​JCIM.​8B008​32/​ASSET/​
IMAGES/​LARGE/​CI-​2018-​008323_​0003.​JPEG

	5.	 Cheng Z, Zhao Q, Li Y, Wang J (2022) IIFDTI: predicting drug-target inter-
actions through interactive and independent features based on attention 
mechanism. Bioinformatics 38(17):4153–4161. https://​doi.​org/​10.​1093/​
BIOIN​FORMA​TICS/​BTAC4​85

	6.	 Chen L, Tan X, Wang D, Zhong F et al (2020) TransformerCPI: improving 
compound-protein interaction prediction by sequence-based deep 
learning with self-attention mechanism and label reversal experiments. 

https://doi.org/10.1186/s13321-024-00913-1
https://doi.org/10.1186/s13321-024-00913-1
https://imsb.s3.baiome.org/pub/Datasets.zip
https://github.com/sabdollahi/CTI_Comparisons
https://github.com/sabdollahi/CTI_Comparisons
https://doi.org/10.1038/nrd.2018.168
https://doi.org/10.1038/nrd3845
https://doi.org/10.1038/462167a
https://doi.org/10.1021/ACS.JCIM.8B00832/ASSET/IMAGES/LARGE/CI-2018-008323_0003.JPEG
https://doi.org/10.1021/ACS.JCIM.8B00832/ASSET/IMAGES/LARGE/CI-2018-008323_0003.JPEG
https://doi.org/10.1093/BIOINFORMATICS/BTAC485
https://doi.org/10.1093/BIOINFORMATICS/BTAC485


Page 26 of 26Abdollahi et al. Journal of Cheminformatics  (2024) 16:118

Bioinformatics 36(16):4406–4414. https://​doi.​org/​10.​1093/​BIOIN​FORMA​TICS/​
BTAA5​24

	7.	 Öztürk H, Özgür A, Ozkirimli E (2018) DeepDTA: deep drug-target binding 
affinity prediction. Bioinformatics 34(17):821–829. https://​doi.​org/​10.​1093/​
BIOIN​FORMA​TICS/​BTY593. arXiv:​1801.​10193

	8.	 Lee I, Keum J, Nam H (2019) DeepConv-DTI: Prediction of drug-target 
interactions via deep learning with convolution on protein sequences. PLOS 
Comput Biol. 15(6):1007129. https://​doi.​org/​10.​1371/​JOURN​AL.​PCBI.​10071​
29. arXiv:​1811.​02114

	9.	 Huang K, Xiao C, Glass LM, Sun J (2021) Moltrans: Molecular interac-
tion transformer for drug-target interaction prediction. Bioinformatics 
37:830–836. https://​doi.​org/​10.​1093/​BIOIN​FORMA​TICS/​BTAA8​80

	10.	 Lim J, Ryu S, Park K, Choe YJ et al (2019) Predicting drug-target interaction 
using a novel graph neural network with 3D structure-embedded graph 
representation. J Chem Inf Model 59(9):3981–3988. https://​doi.​org/​10.​1021/​
ACS.​JCIM.​9B003​87/​ASSET/​IMAGES/​LARGE/​CI9B0​0387_​0003.​JPEG

	11.	 Ahn S, Lee SE, Kim M (2022) Random-forest model for drug-target interac-
tion prediction via Kullbeck-Leibler divergence. J Cheminform 14(1):1–13. 
https://​doi.​org/​10.​1186/​S13321-​022-​00644-1/​FIGUR​ES/9

	12.	 Li Y, Huang YA, You ZH, Li LP et al (2019) Drug-target interaction prediction 
based on drug fingerprint information and protein sequence. Molecular 
24(16):2999. https://​doi.​org/​10.​3390/​MOLEC​ULES2​41629​99

	13.	 Nguyen T, Le H, Quinn TP, Nguyen T, Le TD, Venkatesh S (2021) Graphdta: 
predicting drug-target binding affinity with graph neural networks. Bioinfor-
matics 37:1140–1147. https://​doi.​org/​10.​1093/​BIOIN​FORMA​TICS/​BTAA9​21

	14.	 ...Chen L, Fan Z, Chang J, Yang R, Hou H, Guo H, Zhang Y, Yang T, Zhou C, Sui 
Q, Chen Z, Zheng C, Hao X, Zhang K, Cui R, Zhang Z, Ma H, Ding Y, Zhang N, 
Lu X, Luo X, Jiang H, Zhang S, Zheng M (2023) Sequence-based drug design 
as a concept in computational drug design. Nat Commun 14:1–21. https://​
doi.​org/​10.​1038/​s41467-​023-​39856-w

	15.	 Ye Q, Hsieh CY, Yang Z, Kang Y et al (2021) A unified drug-target interac-
tion prediction framework based on knowledge graph and recom-
mendation system. Nat Commun 12(1):1–12. https://​doi.​org/​10.​1038/​
s41467-​021-​27137-3

	16.	 Thafar MA, Thafar MA, Olayan RS, Olayan RS et al (2020) DTiGEMS+: Drug-
target interaction prediction using graph embedding, graph mining, and 
similarity-based techniques. J Cheminform 12(1):1–17. https://​doi.​org/​10.​
1186/​S13321-​020-​00447-2/​TABLES/5

	17.	 Atas Guvenilir H, Doğan T (2023) How to approach machine learning-
based prediction of drug/compound-target interactions. J Cheminform 
15(1):1–36. https://​doi.​org/​10.​1186/​S13321-​023-​00689-W/​TABLES/2

	18.	 Beshnova D, Ye J, Onabolu O, Moon B et al (2020) De novo prediction of 
cancer-associated T cell receptors for noninvasive cancer detection. Sci 
Transl Med 12(557):3738. https://​doi.​org/​10.​1126/​SCITR​ANSLM​ED.​AAZ37​38/​
SUPPL_​FILE/​AAZ37​38_​SM.​PDF

	19.	 Rives A, Meier J, Sercu T, Goyal S, Lin Z, Liu J, Guo D, Ott M, Zitnick CL, Ma 
J, Fergus R (2021) Biological structure and function emerge from scaling 
unsupervised learning to 250 million protein sequences. Proc Natl Acad Sci 
USA 118:2016239118. https://​doi.​org/​10.​1073/​PNAS.​20162​39118/​SUPPL_​
FILE/​PNAS.​20162​39118.​SAPP.​PDF

	20.	 Evolutionary-scale prediction of atomic-level protein structure with a 
language model. Science 379, 1123–1130 (2023) https://​doi.​org/​10.​1126/​
SCIEN​CE.​ADE25​74/​SUPPL_​FILE/​SCIEN​CE.​ADE25​74_​SM.​PDF

	21.	 Sieg J, Flachsenberg F, Rarey M (2019) In need of bias control: evaluating 
chemical data for machine learning in structure-based virtual screening. J 
Chem Inform Model 59:947–961. https://​doi.​org/​10.​1021/​ACS.​JCIM.​8B007​
12/​SUPPL_​FILE/​CI8B0​0712_​SI_​001.​PDF

	22.	 Chen L, Cruz A, Ramsey S, Dickson CJ, Duca JS, Hornak V, Koes DR, Kurtzman 
T (2019) Hidden bias in the dud-e dataset leads to misleading perfor-
mance of deep learning in structure-based virtual screening. PLOS ONE 
14:0220113. https://​doi.​org/​10.​1371/​JOURN​AL.​PONE.​02201​13

	23.	 Chan WKB, Zhang H, Yang J, Brender JR, Hur J, Ozgur A, Zhang Y (2015) 
Glass: a comprehensive database for experimentally validated gpcr-ligand 
associations. Bioinformatics 31:3035–3042. https://​doi.​org/​10.​1093/​BIOIN​
FORMA​TICS/​BTV302

	24.	 Zaheer M, Guruganesh G, Dubey A, Ainslie J et al (2020) Big bird: transform-
ers for longer sequences. Adv Neural Inf Process Syst 33:17283–17297

	25.	 Tang J, Szwajda A, Shakyawar S, Xu T et al (2014) Making sense of large-scale 
kinase inhibitor bioactivity data sets: a comparative and integrative analysis. 
J Chem Inf Model 54(3):735–743. https://​doi.​org/​10.​1021/​CI400​709D/​
SUPPL_​FILE/​CI400​709D_​SI_​002.​XLSX

	26.	 Davis MI, Hunt JP, Herrgard S, Ciceri P et al (2011) Comprehensive analysis 
of kinase inhibitor selectivity. Nat Biotechnol 29(11):1046–1051. https://​doi.​
org/​10.​1038/​nbt.​1990

	27.	 Veber DF, Johnson SR, Cheng HY, Smith BR et al (2002) Molecular properties 
that influence the oral bioavailability of drug candidates. J Med Chem 
45(12):2615–2623. https://​doi.​org/​10.​1021/​JM020​017N/​SUPPL_​FILE/​JM020​
017N_S.​PDF

	28.	 Glickman MS, Sawyers CL (2012) Converting cancer therapies into cures: 
lessons from infectious diseases. Cell 148(6):1089–1098. https://​doi.​org/​10.​
1016/J.​CELL.​2012.​02.​015

	29.	 Friedman R (2022) Computational studies of protein-drug binding affinity 
changes upon mutations in the drug target. Wiley Interdiscip Rev Comput 
Mol Sci 12(1):1563. https://​doi.​org/​10.​1002/​WCMS.​1563

	30.	 Lin X, Quan Z, Wang ZJ, Huang H et al (2020) A novel molecular repre-
sentation with BiGRU neural networks for learning atom. Brief Bioinform 
21(6):2099–2111. https://​doi.​org/​10.​1093/​BIB/​BBZ125

	31.	 Axen SD, Huang XP, Cáceres EL, Gendelev L et al (2017) A simple representa-
tion of three-dimensional molecular structure. J Med Chem 60(17):7393–
7409. https://​doi.​org/​10.​1021/​ACS.​JMEDC​HEM.​7B006​96/​SUPPL_​FILE/​JM7B0​
0696_​SI_​002.​CSV

	32.	 Brody S, Alon U, Yahav E (2021) How Attentive are Graph Attention Net-
works? ICLR 2022 - 10th Int. Conf. Learn. Represent. arXiv:​2105.​14491

	33.	 Kawashima S, Pokarowski P, Pokarowska M, Kolinski A et al (2008) AAindex: 
amino acid index database, progress report 2008. Nucleic Acids Res. 
36(suppl-1):202–205. https://​doi.​org/​10.​1093/​NAR/​GKM998

	34.	 Abdollahi S, Lin PC, Chiang JH (2021) WinBinVec: cancer-associated protein-
protein interaction extraction and identification of 20 various cancer types 
and metastasis using different deep learning models. EEE J Biomed Heal 
Inform 25(10):4052–4063. https://​doi.​org/​10.​1109/​JBHI.​2021.​30934​41

	35.	 Asgari E, Mofrad MRK (2015) Continuous Distributed Representation of 
Biological Sequences for Deep Proteomics and Genomics. PLOS One 
10(11):0141287. https://​doi.​org/​10.​1371/​JOURN​AL.​PONE.​01412​87

	36.	 Alley EC, Khimulya G, Biswas S, AlQuraishi M et al (2019) Unified rational 
protein engineering with sequence-based deep representation learning. 
Nat Methods 16(12):1315–1322. https://​doi.​org/​10.​1038/​s41592-​019-​0598-1

	37.	 Rao R, Bhattacharya N, Thomas N, Duan Y et al (2019) Evaluating protein 
transfer learning with TAPE. Adv Neural Inf Process Syst 32:9689 arXiv:​1906.​
08230

	38.	 Jumper J, Evans R, Pritzel A, Green T et al (2021) Highly accurate protein 
structure prediction with AlphaFold. Nature 596(7873):583–589. https://​doi.​
org/​10.​1038/​s41586-​021-​03819-2

	39.	 Akdel M, Pires DEV, Pardo EP, Jänes J et al (2022) A structural biology 
community assessment of AlphaFold2 applications. Nat Struct Mol Biol 
29(11):1056–1067. https://​doi.​org/​10.​1038/​s41594-​022-​00849-w

	40.	 Keskin Karakoyun H, Yüksel SK, Amanoglu I, Naserikhojasteh L et al (2023) 
Evaluation of AlphaFold structure-based protein stability prediction on mis-
sense variations in cancer. Front Genet 14:1052383. https://​doi.​org/​10.​3389/​
FGENE.​2023.​10523​83/​BIBTEX

	41.	 Ma W, Zhang S, Li Z, Jiang M et al (2022) Enhancing protein function 
prediction performance by utilizing alphafold-predicted protein structures. J 
Chem Inf Model 62(17):4008–4017. https://​doi.​org/​10.​1021/​ACS.​JCIM.​2C008​
85/​ASSET/​IMAGES/​LARGE/​CI2C0​0885_​0006.​JPEG

	42.	 Clementel D, Del Conte A, Monzon AM, Camagni GF et al (2022) RING 3.0: 
fast generation of probabilistic residue interaction networks from structural 
ensembles. Nucleic Acids Res. 50(W1):651–656. https://​doi.​org/​10.​1093/​
NAR/​GKAC3​65

	43.	 Vaswani A, Brain G, Shazeer N, Parmar N et al (2017) Attention is all you 
need. Adv Neural Inf Process Syst. 30:1

	44.	 Deng L, Ly C, Abdollahi S, Zhao Y et al (2023) Performance comparison of 
TCR-pMHC prediction tools reveals a strong data dependency. Front Immu-
nol 14:1128326. https://​doi.​org/​10.​3389/​FIMMU.​2023.​11283​26/​BIBTEX

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://doi.org/10.1093/BIOINFORMATICS/BTAA524
https://doi.org/10.1093/BIOINFORMATICS/BTAA524
https://doi.org/10.1093/BIOINFORMATICS/BTY593
https://doi.org/10.1093/BIOINFORMATICS/BTY593
http://arxiv.org/abs/1801.10193
https://doi.org/10.1371/JOURNAL.PCBI.1007129
https://doi.org/10.1371/JOURNAL.PCBI.1007129
http://arxiv.org/abs/1811.02114
https://doi.org/10.1093/BIOINFORMATICS/BTAA880
https://doi.org/10.1021/ACS.JCIM.9B00387/ASSET/IMAGES/LARGE/CI9B00387_0003.JPEG
https://doi.org/10.1021/ACS.JCIM.9B00387/ASSET/IMAGES/LARGE/CI9B00387_0003.JPEG
https://doi.org/10.1186/S13321-022-00644-1/FIGURES/9
https://doi.org/10.3390/MOLECULES24162999
https://doi.org/10.1093/BIOINFORMATICS/BTAA921
https://doi.org/10.1038/s41467-023-39856-w
https://doi.org/10.1038/s41467-023-39856-w
https://doi.org/10.1038/s41467-021-27137-3
https://doi.org/10.1038/s41467-021-27137-3
https://doi.org/10.1186/S13321-020-00447-2/TABLES/5
https://doi.org/10.1186/S13321-020-00447-2/TABLES/5
https://doi.org/10.1186/S13321-023-00689-W/TABLES/2
https://doi.org/10.1126/SCITRANSLMED.AAZ3738/SUPPL_FILE/AAZ3738_SM.PDF
https://doi.org/10.1126/SCITRANSLMED.AAZ3738/SUPPL_FILE/AAZ3738_SM.PDF
https://doi.org/10.1073/PNAS.2016239118/SUPPL_FILE/PNAS.2016239118.SAPP.PDF
https://doi.org/10.1073/PNAS.2016239118/SUPPL_FILE/PNAS.2016239118.SAPP.PDF
https://doi.org/10.1126/SCIENCE.ADE2574/SUPPL_FILE/SCIENCE.ADE2574_SM.PDF
https://doi.org/10.1126/SCIENCE.ADE2574/SUPPL_FILE/SCIENCE.ADE2574_SM.PDF
https://doi.org/10.1021/ACS.JCIM.8B00712/SUPPL_FILE/CI8B00712_SI_001.PDF
https://doi.org/10.1021/ACS.JCIM.8B00712/SUPPL_FILE/CI8B00712_SI_001.PDF
https://doi.org/10.1371/JOURNAL.PONE.0220113
https://doi.org/10.1093/BIOINFORMATICS/BTV302
https://doi.org/10.1093/BIOINFORMATICS/BTV302
https://doi.org/10.1021/CI400709D/SUPPL_FILE/CI400709D_SI_002.XLSX
https://doi.org/10.1021/CI400709D/SUPPL_FILE/CI400709D_SI_002.XLSX
https://doi.org/10.1038/nbt.1990
https://doi.org/10.1038/nbt.1990
https://doi.org/10.1021/JM020017N/SUPPL_FILE/JM020017N_S.PDF
https://doi.org/10.1021/JM020017N/SUPPL_FILE/JM020017N_S.PDF
https://doi.org/10.1016/J.CELL.2012.02.015
https://doi.org/10.1016/J.CELL.2012.02.015
https://doi.org/10.1002/WCMS.1563
https://doi.org/10.1093/BIB/BBZ125
https://doi.org/10.1021/ACS.JMEDCHEM.7B00696/SUPPL_FILE/JM7B00696_SI_002.CSV
https://doi.org/10.1021/ACS.JMEDCHEM.7B00696/SUPPL_FILE/JM7B00696_SI_002.CSV
http://arxiv.org/abs/2105.14491
https://doi.org/10.1093/NAR/GKM998
https://doi.org/10.1109/JBHI.2021.3093441
https://doi.org/10.1371/JOURNAL.PONE.0141287
https://doi.org/10.1038/s41592-019-0598-1
http://arxiv.org/abs/1906.08230
http://arxiv.org/abs/1906.08230
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41594-022-00849-w
https://doi.org/10.3389/FGENE.2023.1052383/BIBTEX
https://doi.org/10.3389/FGENE.2023.1052383/BIBTEX
https://doi.org/10.1021/ACS.JCIM.2C00885/ASSET/IMAGES/LARGE/CI2C00885_0006.JPEG
https://doi.org/10.1021/ACS.JCIM.2C00885/ASSET/IMAGES/LARGE/CI2C00885_0006.JPEG
https://doi.org/10.1093/NAR/GKAC365
https://doi.org/10.1093/NAR/GKAC365
https://doi.org/10.3389/FIMMU.2023.1128326/BIBTEX

	A comprehensive comparison of deep learning-based compound-target interaction prediction models to unveil guiding design principles
	Abstract 
	Introduction
	Results
	Performance evaluation on the large aggregated dataset
	Evaluating the target representation vectors
	Performance evaluation of models on distinct datasets
	Training on wild-type targets and testing on mutated targets
	The influence of rotatable bonds on CTI predictions
	The execution time of the models
	Performance improvement through pre-trained embeddings and physicochemical properties
	Comparison of models using the label reversal experiments

	Discussion
	Methods
	Datasets
	Data preprocessing

	Gold-standard Datasets
	Negative samples generation
	Large-aggregated datasets
	Rotational bonds-aware datasets
	Mutation-aware dataset

	Input features
	Input features of compounds
	Input features of targets

	Models
	Random Forest
	AlphaFoldGrAtts
	PhyGrAtt
	The E3FP-based model
	The 2DFP-based model
	The BERT (and UniRep)-based models
	PhyChemDG

	Evaluation approaches

	References


