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Abstract 

Molecular fragmentation is an effective suite of approaches to reduce the formal computational complexity of quan-
tum chemistry calculations while enhancing their algorithmic parallelisability. However, the practical applicability 
of fragmentation techniques remains hindered by a dearth of automation and effective metrics to assess the qual-
ity of a fragmentation scheme. In this article, we present the Quick Fragmentation via Automated Genetic Search 
(QFRAGS), a novel automated fragmentation algorithm that uses a genetic optimisation procedure to generate 
molecular fragments that yield low energy errors when adopted in Many Body Expansions (MBEs). Benchmark test-
ing of QFRAGS on protein systems with less than 500 atoms, using two-body (MBE2) and three-body (MBE3) MBE 
calculations at the HF/6-31G* level, reveals mean absolute energy errors (MAEE) of 20.6 and 2.2 kJ mol

−1 , respectively. 
For larger protein systems exceeding 500 atoms, MAEEs are 181.5 kJ mol

−1 for MBE2 and 24.3 kJ mol
−1 for MBE3. 

Furthermore, when compared to three manual fragmentation schemes on a 40-protein dataset, using both MBE 
and Fragment Molecular Orbital techniques, QFRAGS achieves comparable or often lower MAEEs. When applied 
to a 10-lipoglycan/glycolipid dataset, MAEs of 7.9 and 0.3 kJ mol

−1 were observed at the MBE2 and MBE3 levels, 
respectively.

Scientific Contribution This Article presents the Quick Fragmentation via Automated Genetic Search (QFRAGS), 
an innovative molecular fragmentation algorithm that significantly improves upon existing molecular fragmenta-
tion approaches by specifically addressing their lack of automation and effective fragmentation quality metrics. With 
an evolutionary optimisation strategy, QFRAGS actively pursues high quality fragments, generating fragmentation 
schemes that exhibit minimal energy errors on systems with hundreds to thousands of atoms. The advent of QFRAGS 
represents a significant advancement in molecular fragmentation, greatly improving the accessibility and computa-
tional feasibility of accurate quantum chemistry calculations.

Keywords  Molecular fragmentation, Quantum chemical calculations, Many body expansion, Fragment molecular 
orbital, Molecular graph theory

Introduction
In contemporary research within the fields of drug dis-
covery, synthetic biology, chemistry, and materials sci-
ence, a significant challenge is the limited ability to 
accurately model large-scale molecular processes using 
computational methods. Notable examples of this include 
the computational study of carbon capture and seques-
tration using porous materials [21, 62], the accurate 
modelling of interactions between ligands and proteins 
for effective drug design [1, 12, 56], and the simulation 
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of the degradation or removal of organic waste materials, 
such as pesticides, using novel catalysts [25, 40]. These 
problems, along with many others, necessitate chemically 
accurate models of molecular systems including explicitly 
hundreds to thousands of atoms.

Quantum chemistry (QC) calculations have the poten-
tial to provide such models. However, the computa-
tional time required by accurate ab initio QC methods 
increases extremely fast-formally faster than O(N 4) [6, 
36, 61]-with the size of the system. This rapid growth in 
computational demand severely limits the applicability of 
these methods to large molecular systems. Additionally, 
the algorithms fundamental to QC calculations are gen-
erally not optimised to leverage the extensive parallelism 
inherent in contemporary supercomputer architectures, 
which further complicates this challenge.

Molecular fragmentation is an effective strategy for 
tackling scalability and parallelisation issues in quantum 
chemical modelling. This suite of methodologies is based 
on the premise that quantum chemical interactions are 
sufficiently localised, allowing a chemical system to be 
divided into smaller segments known as monomers. To 
approximate the energy of the entire, unfragmented sys-
tem, fragmentation approaches incrementally include 
the effects of larger fragments. These fragments, which 
encompass interactions among monomers, range from 
dimers and trimers to larger n-mers.

For example, in fragmentation methods based on the 
Many Body Expansion (MBE) [53], the energy of the sys-
tem is obtained as the following sum over fragments

where EI is the energy of monomer I, �EIJ and �EIJK  are 
dimer and trimer energy corrections defined as follows

where EIJ is the energy of a dimer system obtained as the 
union of monomers I and J, and EIJK  is the energy of a 
trimer system obtained as the union of monomers I, J, K.

The calculations of two-body and higher order terms 
( �EIJ , �EIJK  , etc.) are only performed on fragments that 
are spatially close together, yielding an asymptotic scaling 
of O(N ) with system size [16, 44].

The hierarchical nature of the MBE allows it to approx-
imate the total energy to greater accuracy through the 
systematic inclusion of higher order terms [57]. In addi-
tion, the energy calculations of the many-body frag-
ments (monomers, dimers, etc.) can be performed 

(1)EMBE =

∑

I

EI +
∑

I<J

�EIJ +
∑

I<J<K

�EIJK + ...

(2)�EIJ =EIJ − EI − EJ ,

(3)
�EIJK =EIJK −�EIJ −�EIK −�EJK

− EI − EJ − EK

independently, thereby exposing significant opportuni-
ties for exploiting large-scale parallelism [16].

Although fragmentation methods offer considerable 
advantages, they are usually not applicable in a general 
black-box fashion to medium and large molecular sys-
tems. This can be primarily attributed to a dearth of auto-
mated fragmentation procedures. Currently, the design 
of fragments that yield accurate results is typically per-
formed manually, requiring a laborious iterative com-
bination of chemical intuition and trial and error. This 
not only limits the size of systems that can be accurately 
fragmented and studied, but also renders the resulting 
fragmentation schemes largely nontransferable across 
molecular systems and application studies.

Automated bond-breaking fragmentation algorithms 
have been developed in conjunction with the Molecu-
lar Tailoring Approach [26, 37], Systematic Molecular 
Fragmentation [14, 15, 20], and the Generalised Energy 
Based Fragmentation [31, 32, 42]. These techniques cre-
ate fragments from small units like functional groups or 
non-hydrogen atoms, selecting a specific size based on 
distance criteria (either the number of bonds or spatial 
distance). However, these fragmentation algorithms gen-
erally do not explicitly consider the surrounding chemi-
cal environment nor the energetic effects of the bond 
breaking, as fragment generation is primarily guided by 
basic distance and connectivity factors.

The main challenge in constructing a high quality frag-
mentation scheme is the generation of an optimal set of 
fragments that minimises the fragmentation energy error 
while retaining a user-defined fragment size. This goal is 
elusive and remains largely unaccomplished, primarily 
due to the absence of fragmentation strategies focused on 
generating high-quality fragments. A key issue with cur-
rent schemes is their lack of explicit consideration for the 
types of bonds being broken. It is well-recognised that 
different sets of fragments, resulting from breaking vari-
ous bonds, can lead to varied approximations of the final 
energy value. The severance of different bonds, yielding 
unique sets of fragments, results in the loss of distinct 
chemical interactions. This, in turn, leads to different 
estimates of the final energy of the unfragmented system.

The significance of the nature of bond breaking in 
molecular fragmentation was highlighted, for example, 
in a previous study which focused on the application of 
the Fragment Molecular Orbital (FMO) [22, 38] method 
to DNA molecules. In this study, DNA was fragmented 
by cutting either the carbon-carbon (C-C) or carbon-
oxygen (C-O) bond between the five-carbon sugar and 
phosphate group, as shown in Fig.  1. Considering the 
close proximity of these bonds, one might anticipate sim-
ilar energy estimations for the intact system using both 
fragmentation schemes. However, the calculated energies 
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for the two approaches showed a significant difference, 
exceeding 18  kJ mol−1 [48]. It is noteworthy that these 
fragmentation errors scale linearly with the fragment 
count.

Thus, the issue at hand raises an important question: 
How can we measure the effectiveness of a molecular frag-
mentation scheme?

In current methodologies, the efficiency of these 
schemes is not known beforehand. Instead, their effec-
tiveness is only determined retrospectively. This is done 
by calculating the system energy with and without frag-
mentation and comparing the results. However, for large 
molecular systems comprising hundreds to thousands of 
atoms, calculating the unfragmented system energy with 
traditional QC approaches is impractically demanding. 
The primary aim of fragmentation methods is, in fact, to 
circumvent this very challenge. Consequently, employing 
such a metric for evaluation is neither practical nor rea-
sonable, and we necessitate the development of a more 
feasible alternative approach.

In this Article, we present a novel automatic fragmen-
tation scheme that aims to obtain the optimal sets of 
fragments for a molecular system. This new approach, 
named the Quick Fragmentation via Automated Genetic 
Search (QFRAGS), employs a specialised scoring func-
tion to assess fragmentation quality. The scoring function 
is designed and parameterised to obtain a strong correla-
tion with the energy error of the resulting fragmentation 
scheme, thereby circumventing the usage of an expensive 
and generally unusable direct energy error metric. This 
enables recasting the fragmentation problem as an evo-
lutionary optimisation of the scoring function, which is a 
rapid, cost-efficient and accurate process.

We begin in Sect. Materials and methods with describ-
ing the datasets of molecular systems QFRAGS was 
applied to. This is followed by a description of the meth-
odology of the fragmentation scheme, particularly, the 

scoring function used to describe the quality of frag-
mentation and the mathematical representation of the 
molecular system and its fragmentation. Then, we detail 
the approach used for the optimisation of weights in 
the scoring function. Next, in Sect.  Algorithms, we dis-
cuss the algorithms utilised for the optimisation of the 
scoring function. The optimised weights are reported 
in Sect.  Results and discussion and these were used in 
the application of QFRAGS to over 1000 protein sys-
tems. The corresponding fragment sizes generated and 
their corresponding energetic accuracy are discussed in 
Sect.  Results and discussion. To further exemplify the 
accuracy of QFRAGS, a comparison to three manual 
fragmentation schemes is presented in Sect. Results and 
discussion. Sect. Conclusion concludes.

Materials and methods
Datasets
The automatic fragmentation algorithm will be applied 
across a range of biologically significant protein systems. 
These systems hold special relevance in the fields of drug 
design and synthetic biology, which are prominent areas 
of application for molecular fragmentation techniques.

Figure  2 shows the classification of the three protein 
datasets used in this study. Cumulatively, the datasets 

Fig. 1  The two alternative fragmentation schemes for fragmenting DNA used in [48]. Fragments are formed by either a breaking the C–C bond or b 
breaking the C–O bond

Fig. 2  Classification of datasets used in this study
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comprise 1100 protein structures obtained from two 
different sources. A subset of 100 protein structures, 
included in Dataset 3 as indicated in Fig. 2, was extracted 
from the PDB-Bind database [64]. These structures 
are characterised by having more than 500 atoms each. 
Notably, protein systems with less than 500 atoms are 
rare in the PDB-Bind dataset. To address the shortage 
of such systems, we took existing protein structures in 
the PDB-Bind dataset and fragmented these to generate 
1000 additional systems with less than 500 atoms. This 
involved severing single Cα -N or Cα -C bonds and valence 
is restored by appending hydrogens along the axis of the 
bond cut. Specifically, the coordinates of the hydrogen 
cap x(H) is given by

where x denotes a Cartesian coordinate, r is the standard 
covalent radius given by Cordero et al [18], and i, j denote 
the atoms belonging to the severed bond.

None of the resulting 1000 systems were derived from 
structures present in Dataset 3. All datasets are mutually 
exclusive.

All protein structures were hydrogenated using the 
PDBFixer software at the default pH of 7.0. All protein 
structures herein comprise one polypeptide chain and 
no metal-dependent structures are present within the 
dataset.

As illustrated in Fig. 2, the classification of the data-
sets involves an initial split of the full dataset based on 
the size where 500 atoms is the threshold. This thresh-
old distinguishes between structures taken directly 
from the PDB-Bind dataset as opposed to the generated 
structures. The dataset of 1000 generated systems is 
further divided in two datasets with a 80:20 split. Here, 
80% of the structures are used for the optimisation of 
hyperparameters within the fragmentation algorithm 

(4)x(H) = x(i)+
r(i)+ r(H)

r(i)+ r(j)

(

x(j)− x(i)
)

(Dataset  1) and 20% is used to test the application of 
QFRAGS with the optimised hyperparameters (Data-
set 2). The optimisation of the hyperparameters is pre-
sented in Sect.  2.4. Similar to Dataset  2, Dataset  3 is 
also a test dataset but for protein systems with more 
than 500 atoms. The size distributions of the three 
datasets are shown in Fig. 3.

Structures used for the optimisation of hyperpa-
rameters (Dataset  1) comprise a diverse set of protein 
sequences; 90.4% and 3.3% of protein pairs exhibited 
pairwise sequence identity (PID) scores below 20% 
and between 20% and 30%. On the other hand, 6.3% of 
structure pairs exhibit PID values greater than 30%. Fur-
thermore, these structures also exhibit a wide range of 
functionalities including: signalling proteins, structural 
proteins, toxins, viral proteins, enzymes, DNA/RNA 
binding proteins, transcription and transport proteins.

In addition, we also applied QFRAGS to 10 glycolipid 
or lipoglycans systems ranging between 368 and 727 
atoms to demonstrate its applicability to systems beyond 
proteins. All structures were taken from the Human 
Metabolome Database (HMDB) directly. These struc-
tures were selected on the basis of size. Specifically, 
structures within HMDB were sorted against size and 
we randomly selected 10 systems belonging in the top 20 
largest glycolipids/lipoglycans. We selected glycolipids 
and lipoglycans structures to apply QFRAGS to for two 
main reasons. Firstly, such systems are of particular bio-
logical significance as they include structures that form 
part of cell membranes responsible for structural integ-
rity or modulating signal transduction events, as well as 
serving as intermediates in the synthesis pathway of gly-
cans where disruptions can lead to congenital disorders 
of glycosylation. Secondly, unlike proteins which have an 
intuitive monomeric unit (amino acids), lipoglycans/gly-
colipids do not and we endeavour to examine the perfor-
mance of QFRAGS on such systems.

Fig. 3  Size distribution of systems belonging to the three datasets: Dataset 1, 2 and 3. Averages are indicated by vertical lines 
and the corresponding values are reported.
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Single point Hartree‑Fock energy calculations
In this study, single point energy calculations on molecu-
lar systems are conducted to evaluate the effectiveness of 
the proposed fragmentation algorithm and to fine-tune 
the hyperparameters utilised in the process. These calcu-
lations were consistently carried out at the Hartree-Fock 
theoretical level, employing the 6-31G* basis set. Unless 
specifically indicated, all computations were executed 
using the Extreme-scale Electronic Structure System 
(EXESS) quantum chemical software package [7–9, 27, 
50, 59, 60].

To assess the accuracy of the proposed fragmentation 
scheme, we use the difference between the energy of the 
unfragmented system ( Etot ) and the energy obtained via 
fragmentation ( Ef ):

Evaluating �E requires performing full system energy 
calculations ( Etot ) on datasets of protein systems, each 
containing hundreds or thousands of atoms. Prior 
research has underscored the limitations of the tradi-
tional Superposition of Atomic Densities (SAD) as an 
initial guess approach [5]. Notably, SAD initial guesses 
often face convergence challenges in systems compris-
ing hundreds of atoms [29]. Additionally, SAD density 
matrices are typically charge neutral [41], which is usu-
ally not compatible with protein systems, as they fre-
quently contain charged chemical groups. Consequently, 
due to the convergence issues encountered when apply-
ing SAD to large systems with charged groups, this study 
adopts an alternative initial guess strategy for full system 
calculations.

Specifically, our initial guess starts by dividing the 
molecular system into monomers, each containing 
approximately 30 atoms. Only single bonds are severed 
here. Ab initio calculations are then performed on each 
monomer where SAD is used. Once the monomer densi-
ties converge, they are combined to form a block-diago-
nal density matrix, which is used as the initial guess for 
the full system calculation.

The fragmentation-based single point energy calcu-
lations ( Ef  ) were performed using two methods: the 
Many Body Expansion (MBE) (Eq. (1)) and the Fragment 
Molecular Orbital (FMO) approach, both at the dimer 
(MBE2 and FMO2) and trimer (MBE3 and FMO3) levels. 
FMO is similar to MBE in that it utilises Eq. (1) to recom-
bine fragment energies. However, rather than perform-
ing fragment energy calculations in vacuo as in MBE, in 
FMO these are performed in a self-consistent manner 
with respect to an electrostatic embedding, known also 
as Coulomb bath or ESP (electrostatic potential), of the 
surrounding monomers [38]. Furthermore, in the MBE 
implementation, hydrogen capping is used to restore 

(5)�E = Etot − Ef .

valence at the sites of bond breaking. Hydrogen atoms 
are appended to fragments along the axis of the broken 
bond. On the other hand for FMO, the adaptive frozen 
orbital (AFO) approach was employed for the treatment 
of broken bonds. This involves freezing the molecular 
orbital of the broken bond [23, 24]. All FMO calculations 
were performed using the GAMESS quantum chemical 
software package [10].

In dimer calculations, all possible dimers were included 
and for trimer calculations, all possible dimers and trim-
ers were included.

Methods for automatic fragmentation
In this section, we delineate the methods underpinning 
our proposed automatic fragmentation algorithm. We 
detail the representation of a molecular system, elucidate 
the metrics employed to evaluate the quality of fragmen-
tation, and explain the representation of fragmentation 
involving bond breaking.

Molecular graph characterisation
As illustrated in Fig.  4, in our fragmentation algorithm, 
a molecular system is represented as a graph where 
the nodes and edges correspond to atoms and covalent 
bonds, respectively. Similar representations have been 
employed across multiple studies that use graphs to cap-
ture the connectivity of molecular systems [3, 4, 11].

In the molecular graph representation, nodes and 
edges are assigned distinct attributes to accurately map 
the molecular system. Each node, representing an atom, 
is characterised by several attributes: the atomic num-
ber, formal charge, number of π electrons, hybridisation 
state, and its Cartesian coordinates. The attribute for 
the number of π electrons holds a non-zero value only 
for atoms that are components of a conjugated system. 
In such cases, this value corresponds to the number of 
π electrons that the atom contributes to the system. For 
instance, the nitrogen atom in a pyrrole molecule pos-
sesses two π electrons.

In contrast, bond order represents the sole attribute 
of an edge. Edges, or bonds, along with their respec-
tive bond orders, are determined based on the distances 
found in the Computational Chemistry Comparison and 
Benchmark DataBase, which includes experimental bond 
lengths [54].

The program not only characterises the nodes and 
edges in the molecular graph but also identifies regions of 
conjugation and hyperconjugation. This identification is 
crucial for understanding how fragmentation might dis-
rupt these molecular features. However, aromatic regions 
are not considered in this context, as the current imple-
mentation is limited to the breaking of single bonds. The 
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rationale behind this limitation is discussed in greater 
detail in Sect. 3.1.1.

Conjugated regions identified as part of the molecular 
graph refer to groups of atoms exhibiting π-conjugation. 
This effect occurs when there are alternating single and 
double/triple bonds along a chain of the structure [46], 
and π-electrons across the atoms becoming delocalised. 
To represent this, in the program, a conjugated group is 
defined as a group of connected nodes where every node 
has a hybridisation state of either sp2 or sp.

Hyperconjugation involves the interaction between 
polarised σ-bonds and nearby π-orbitals [2]. π-orbitals 
are found in various forms, including conjugated sys-
tems, double or triple bonds, and lone pairs on atoms. 
Polarised σ-bonds are typically of the form C-X, where 
X is a hydrogen or a halogen. In a hyperconjugated pair, 
there are donor and acceptor groups, which can be either 
π-systems or σ-systems, or a combination of both. How-
ever, for a pair to be considered hyperconjugated, it must 
include one σ-system and one π-system. In the current 
software implementation, the donor and acceptor groups 
are limited to being at most three bonds apart. Table  1 
outlines the specific hyperconjugation donor and accep-
tor groups identified in this scheme. The conjugated 
groups that are identified serve as potential donors and 
acceptors for hyperconjugation.

Scoring function
In pursuit of an alternative non-energy-based metric to 
describe the quality of fragmentation, we employ the fol-
lowing scoring function

where the penalty factors pi are designed to account for 
various chemical and implementation factors. Broadly, 
these penalty factors fall into two categories. The first 

(6)
s =β1ppe + β2pconj + β3phyper + β4pvol

+ β5pcomp + β6pvrange

category encompasses penalties related to potential 
energy, conjugation, and hyperconjugation, with the 
primary objective of maintaining the chemical environ-
ment’s integrity. The second category focuses on manag-
ing fragment size. This includes penalties based on the 
volume of fragments, the number of fragments, and the 
range of their volumes, ensuring that the fragments pro-
duced closely match the desired target size.

Each penalty pi is a function that takes a set of bro-
ken bonds as input and produces a corresponding pen-
alty value associated with the factor i. The parameters 
βi serve as the weights for these penalties pi . The sub-
sequent text outlines the formulation of each penalty 
term.

Potential energy penalty
The ppe penalty is a measure of the change in the 

potential energy of the system induced by the frag-
mentation scheme. This is evaluated according to the 
formula:

Fig. 4  Graph representation of an input molecular system. Hydrogen atoms are omitted for clarity. Loner nodes in hyperconjugated regions 
correspond to hyperconjugated donor/acceptor C-H

Table 1  Classification of hyperconjugated groups

Corresponding σ/π nature that the program identifies. Hybridisation states and 
charges are shown on relevant atoms

Group Type Classification

C=C π Donor/acceptor

C≡C π Donor/acceptor

C-H σ Donor/acceptor

C=O π Acceptor

C-F σ Acceptor

C-Cl σ Acceptor

C-Br σ Acceptor

C-I σ Acceptor

C
+ (sp2) π Acceptor

C
− (sp2) π Donor

N(sp3) π Donor

O(sp3) π Donor
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The formula for ppe comprises two logistic sigmoid func-
tions that are mirror images of each other and handle 
positive and negative �pe values. The �pe term is the dif-
ference between the energy of the total unfragmented 
system ( Etot ) and the total energy ( EMBE1 ) obtained at the 
one-body MBE level (MBE1)

Here, both the Etot and EMBE1 energies are calculated 
using the universal force field (UFF) [43, 52]. This was 
selected due to its accessibility with parameters available 
for all atoms in the periodic table [35] as well as its low 
computational evaluation time.

The values of the parameters � and d in Eq.  (7) are 
1.963 and 6, respectively. These are defined based on 
where the sigmoid function has sufficiently approached 
the lower and upper asymptotes. The definition of 
“sufficiently approached” used is that reported by 
McDowall and co-workers [45] where the function is 
considered to have sufficiently approached the asymp-
tote when it is 5% above or below it. Thus, � and d were 
selected by setting the lower and upper threshold val-
ues of the positive sigmoid function to correspond to 
�pe = 10 and �pe = 40  kJ mol−1 , respectively. We call 
these �pe values the boundary points.

The γ parameter in Eq. (7) is a scaling function and is 
defined as follows

where Nf  is the number of fragments, Nmin
A  is the num-

ber of atoms in the smallest fragment, and nt is the target 
fragment size. The role of this scaling factor is to modu-
late the range between the boundary points. If γ is small, 
the range becomes narrower and the opposite is true for 
larger γ values.

The UFF employed in the computation of ppe imple-
ments simple functional forms, and may face difficulty 
in accounting for effects such as conjugation and elec-
tronic effects including hyperconjugation [13, 66]. 
Thus, the effects of the fragmentation on conjugation 
and hyperconjugation are included as separate penal-
ties in the scoring function.

Conjugation penalty
The conjugation penalty ( pconj ) is defined as

(7)

ppe =
1

1+ exp (− �

γ
(�pe − γd))

+

1

1+ exp (− �

γ
(−�pe − γd))

.

(8)�pe = Etot − EM BE1.

(9)γ =

√

Nf · N
min
A

nt

where k indexes the conjugated systems that have been 
disrupted by fragmentation, Ncs is the total number of 
affected conjugated systems, S is a normalisation func-
tion, �k

conj factors for conjugated system k and is defined 
as follows

Here, NA is the number of atoms within the conjugated 
system, with each atom being indexed by i. The term Ni

e 
denotes the number of π electrons contributed by atom 
i to the conjugated system. Additionally, Ni

A refers to the 
aggregate count of atoms in the conjugated system that 
remains interconnected after fragmentation, specifically 
in the fragment to which atom i pertains. The terms cs is 
a conjugation score of the system given by

For example, consider the case of pyrrole which consists 
of one conjugated system ( Ncs = 1 ). In pyrrole, all non-
hydrogen atoms participate in conjugation ( NA = 5 ). 
Each carbon atom contributes one π electron and the 
nitrogen atom contributes two π electrons from its lone 
pair. Thus, the conjugation score of pyrrole is

The normalisation function S in Eq. (10) has the form

Similar to the normalisation function for the potential 
energy, the exponent � is chosen by setting a boundary 
value to correspond to 5% below the upper asymptote. 
Specifically, we set S(�max

conj ) = 0.95 where �max
conj  is the 

maximum possible value of �conj and arises when every 
bond in the conjugated system is broken. The value of 
�max

conj  is obtained as follows

Hyperconjugation penalty
The hyperconjugation penalty phyper is calculated 

using the following formula

(10)pcon j =
1

Ncs

Ncs
∑

k

S

(

�k
conj

)

(11)�con j =
1

cs

(

1

NA

NA
∑

i

N i
e

N i
A

− cs

)

.

(12)cs =
1

NA

NA
∑

i

N i
e

NA

(13)cspyrrole =
1

5

(

1

5
+

1

5
+

1

5
+

1

5
+

2

5

)

=

6

25

(14)S(�conj) =
1− exp (−��conj)

1+ exp (−��conj)

(15)�max
conj = NA − 1
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Here k indexes the hyperconjugated systems, each com-
prising a donor and an acceptor group, disrupted by frag-
mentation. The Nhs term represents the total count of 
these affected systems, γk is the bond count between the 
donor and acceptor in system k, S is a normalisation 
function, and �k

hyper is defined for each hyperconjugated 
pair k as follows

Eq.  (17) captures the change in electron distribution 
across the donor and acceptor atoms due to fragmenta-
tion. In the first term, Nd denotes the number of frag-
ments containing donor atoms from the hyperconjugated 
pair. The index i identifies these fragments. Ni

e and Ni
A 

respectively represent the number of electrons donated 
and the count of atoms in fragment i . The second term 
mirrors the first, focusing on acceptor atoms. Na indi-
cates the count of fragments with acceptor atoms, with 
j indexing these fragments. Nj

e and Nj
A respectively rep-

resent the number of electrons accepted and the count of 
atoms in fragment j.

To illustrate the meaning of the terms within Eq.  (17), 
consider fragmenting the molecule shown in Fig. 5 by cut-
ting the bond between atoms 2 and 3. There is only one 
hyperconjugation pair present, where the donor is the C=C 
bond (atoms 1 and 2) and the acceptor is the C-Cl bond 
(atoms 3 and 4). After fragmentation, the two donor atoms 
remain connected, therefore in the first term of Eq.  (17), 
Nd = 1 and Ni

A = 2 . Here, Ni
e = 2 as the C=C bond con-

tributes two π electrons to hyperconjugation and the two 
atoms (1 and 2) remain connected. Conversely, for the sec-
ond term in Eq. (17), the two acceptor atoms remain con-
nected, leading to Na = 1 and Nj

A = 2 . Since the bond 
bridging the donor and acceptor groups together has been 

(16)phyper =
1

Nhs

Nhs
∑

k

1

γk
S

(

�k
hyper

)

.

(17)�hyper =
1

Nd

Nd
∑

i

N i
e

N i
A

−

1

Na

Na
∑

j

N
j
e

N
j
A

cut (bond between atoms 2 and 3), electrons are no longer 
being donated to the acceptor, resulting in Nj

e = 0.
The functional form of S in Eq. (16) is identical to that 

of Eq. (14):

The parameter � was selected by setting S(�max
hyper) = 0.95 , 

with �max
hyper being the maximum value of �hyper calculated 

as

where Ne is the sum of all the electrons being donated in 
the hyperconjugated system and Nd

A is the total number 
of donor atoms in the system.

The penalty terms discussed thus far all relate to cap-
turing the perturbation in the chemical environment. The 
following subsections provide the formulation of the pen-
alty terms associated with controlling the fragment size.

Volume penalty
The volume penalty ( pvol ) is defined as

Here Nf  is the number of fragments, k indexes each frag-
ment, and

where Vk is the volume of fragment k, and Vref  is the ref-
erence volume, which is determined from the target frag-
ment size as discussed further below. The exponent of 
-14.654 in Eq. (20) was selected based on where the func-
tion has sufficiently approached the asymptote value of 
pvol = 1 . Specifically, the exponent was selected such that 
when |�vol | = 0.5 , pvol = 0.95.

The volume of a fragment is evaluated according to the 
following formula

Both i and j index atoms belonging the fragment. The Vi 
term is the hard-sphere equivalent atomic volume [28]

where σi is the van der Waals radius of atom i, and Vij is 
the overlapping volume between two atoms [28, 63]

(18)S(�hyper) =
1− exp (−��hyper)

1+ exp (−��hyper)

(19)�max
hyper =

Ne

Nd
A

(20)pvol =
1

Nf

Nf
∑

k

1

1+ exp
(

−14.654(�vol)
2
)

(21)�vol =
1

Nf

Nf
∑

k

(

Vk − Vref

Vref

)

(22)V =

∑

i

Vi −

∑

i<j

Vij

(23)Vi =
4

3
πσ 3

i

Fig. 5  Labelled ball and stick model of 3-chloroprop-1-ene. Green, 
black, white spheres correspond to chloride, carbon and hydrogen 
atoms, respectively
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The amplitude ai is set to a default value of 2
√

2 , and rij 
denotes the distance between atoms i and j. The αi term 
is calculated from σi as follows

The reference volume Vref  is computed using the follow-
ing equation

Here, nt represents the target fragment size, while NA 
denotes the total number of atoms in the molecular sys-
tem. The set S includes all unique atomic elements pre-
sent in the molecular system, for instance, Argon (Ar), 
Carbon (C), Nitrogen (N), etc. The variable s is used 
to index these elements. Ns indicates the total count of 
atoms with the symbol s, and Vs represents the character-
istic volume of an atom with symbol s in the molecular 
system, defined as follows

In Eq. (27), the first term calculates the hard-sphere vol-
ume of an atom denoted by s. Here, K refers to the set of 
atoms directly bonded to an atom symbolised by s, with i 
indexing these neighboring atoms. Vs,i represents the 
overlapping volume between atom s and its neighbors in 
K. Thus, the second term in Eq. (27) averages the overlap-
ping volumes between atom s and its adjacent atoms. As 
an example, consider Fig. 6 illustrating the representative 
volume of oxygen VO . In this case, the overlapping vol-
umes between two atom pairs (designated as nOneigh = 2 ) 

(24)Vij = aiaj exp

(

−

αiαjr
2
ij

αi + αj

)

(

π

αi + αj

)
3
2

(25)αi = π

(

3ai

4πσ 3
i

)
2
3

(26)Vref = nt ·
1

NA

∑

s∈S

NsVs

(27)Vs =
4

3
πσ 3

s −

1

�K�

∑

i∈K

Vs,i

are considered: between atoms 1 and 4, and atoms 4 and 
5.

Volume-range penalty
In the previous discussion on the volume penalty for-

mulation, it is evident that pvol serves as an indicator 
of the average variation in fragment volumes. This defi-
nition implies the possibility of creating a set of frag-
ments with a low pvol value, yet these fragments may 
vary significantly in size.

To address this issue, we introduce the following vol-
ume-range penalty

where d is preset to − 0.25, � is adjusted to 11.78, and

with Vref  defined as in Eq. (26), and Vrange being the dif-
ference between the maximum and minimum fragment 
volumes.

Number-of-components penalty
The final component of the scoring function is the 

penalty term pcomp , defined as

where Nf  is the number of fragments the molecular sys-
tem has been divided into. This penalty term is designed 
to encourage scenarios with a higher count of fragments, 
while discouraging situations with fewer fragments. 
Specifically, pcomp seeks to mitigate cases where no 
fragmentation occurs (i.e., Nf = 1 ), which is otherwise 
favored due to the small pvrange value. In such instances, 
�vrange = 0 and pvrange ≈ 0 , and this effect is counterbal-
anced by a high pcomp value of 1.

The βi Weights
Each penalty in Eq.  (6) is weighted by a matching βi 

factor. These factors are constrained to be non-nega-
tive ( βi ≥ 0 ) and subject to a normalisation constraint, 
ensuring their sum equals one ( 

∑

i βi = 1 ). The impor-
tance of these weights lies in mitigating the impact of 
double counting. For instance, hyperconjugation and 
conjugation are interrelated chemical phenomena, and 
their combined penalties can lead to an over-represen-
tation of chemical disturbances due to either conjuga-
tion or hyperconjugation. Therefore, the βi weights play 
a crucial role in moderating the influence of each factor 
on the overall score, thereby attenuating the effects of 
potential statistical correlations among penalties. The 

(28)pvrange =
1

1+ exp (−�(�vrange − d))

(29)�vrange =
Vrange − Vref

Vref

(30)pcomp =

1

Nf

Fig. 6  Labelled ball and stick model of methanol. Red, black, 
white spheres correspond to oxygen, carbon and hydrogen atoms, 
respectively
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process of determining the βi values involves an optimi-
sation procedure detailed in Sect. 2.4.

Representation of fragmentation and solution space
The essence of the automated fragmentation scheme lies in 
minimising Eq.  (6) to obtain an optimal set of fragments, 
each contributing to the best possible score.

This scheme segments a molecular system into fragments 
by breaking covalent bonds, resulting in edges being either 
broken (labelled as ‘1’) or unbroken (labelled as ‘0’). Con-
sequently, a fragmented molecular system is represented 
as a binary vector, where each element represents an edge 
in the molecular graph. This binary vector is then used as 
input for the scoring function in Eq. (6). The resulting score 
reflects the quality of the corresponding fragmentation.

The objective of the fragmentation algorithm is to parti-
tion a molecular system in a way that minimizes the scor-
ing function. This involves an optimisation process, as 
outlined in Sect. 3.1, which minimises the scoring function 
and yields the ideal set of fragments.

Optimisation of scoring function weights
In this subsection, we elaborate on the methodology used 
for optimising the weights of the scoring function, {βi}.

The optimisation of the {βi} values, as applied in Eq. (6), 
is crucial for generating high-quality fragments. These 
weights quantitatively represent the importance of each 
penalty term in the scoring function. Suboptimal weight-
ings can lead to an imbalanced scoring function. For 
instance, excessively high weighting for the volume penalty 
( pvol ) might result in an unduly low weight for the potential 
energy penalty ( ppe ), leading to fragments with significant 
potential energy variations.

To determine the optimal {βi} values, we employed an 
iterative Bayesian optimisation approach. The weights were 
fine-tuned using Dataset 1, comprising 800 protein systems 
with sizes ranging from 108 to 455 atoms.

The Bayesian optimisation aims to minimise the objec-
tive function defined as

Here, pvol represents the volume penalty, and �E denotes 
the energy difference between the total unfragmented 
system and the MBE2 energy, both computed at the 
HF/6-31G* theory level. The symbol S in Eq.  (31) indi-
cates a normalisation function, analogous to that used for 
ppe , as previously discussed in Sect. 2.3.2, with the excep-
tion that the boundary points of the sigmoid function 
correspond to 1 and 4 kJ mol−1 . The method for evaluat-
ing pvol is also detailed in Sect.  2.3.2. In the equation, i 

(31)f = α
1

n

∑

i

pivol + (1− α)
1

n

∑

i

S(�Ei)

indexes each protein system in the dataset, n is the total 
number of protein systems, and α is a hyperparameter. 
This function, thus, represents a weighted average of the 
deviations in fragment volume and energy across the 
dataset. An α value of 0.5 was chosen to balance the sig-
nificance of volume and energy equally.

The MBE fragmentation method was selected as it 
forms the basis of other fragmentation methods such 
as electrostatically-embedded MBE, generalised MBE 
and FMO.

The design of the objective function in Eq.  (31) aims 
to derive {βi} values that guide the scoring function 
towards producing fragments with minimal MBE2 
energy deviations from the complete, unfragmented 
system, while also maintaining fragment sizes near the 
desired target. For the optimisation procedure, the tar-
get fragment size was set as 50 atoms.

The surrogate model of the objective function was 
modelled using the Gaussian Process Regressor from 
the scikit-learn Python package, employing a radial 
basis function kernel [51]. We set the noise variance 
and length scales to 1.0. The expected improvement 
acquisition function guided the selection of subsequent 
{βi} values for sampling.

Figure  7 illustrates the optimisation workflow. The 
initial stage involved data preparation to build the 
Gaussian Process model. This step included computing 
the objective function f (Eq.  (31)) for 16 different sets 
of {βi} values. These initial values were derived through 
a grid search, ranging from 0.1 to 0.9 in 0.1 intervals, 
as listed in Table 2. As Table 2 indicates, the minimum 
values for both βpe and βvol were set at 0.2, reflecting 
the anticipated higher significance and value of these 
factors (energy and volume) compared to others.

The second stage in the optimisation of {βi} val-
ues includes the optimisation loop where each itera-
tion involves updating the Gaussian Process with the 
recently sampled data, generating the next set of {βi} 
values to sample and using these to fragment and cal-
culate the corresponding MBE2 energies. The objective 
function is evaluated using the MBE2 energies and vol-
ume penalties across all 800 protein systems in Data-
set  1. This process was repeated until the minimum 
objective value remained unchanged for 200 iterations. 
A total of 645 iterations were performed accordingly.

Algorithms
This section describes the algorithms employed within 
QFRAGS for the optimisation of the scoring function 
(Eq.  6) as well as the overall automated fragmentation 
algorithm.
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Optimisation of scoring function
Restriction of solution space and allowed edges
As previously discussed, each specific solution to the 
fragmentation problem is represented in the form of a 
binary vector where each entry corresponds to the state 
of a bond (1—broken, 0—unbroken). However, since 
we are aiming for fragments of a specific size, we can 
eschew from the solution space edges that when sev-
ered generate fragments that are too small.

To accomplish this, we restrict the solution space to 
edges that when cut, do not generate fragments that 
are smaller than 60% of the target fragment size ( nt ). 
For example, consider the fragmentation of the protein 

system consisting of MFS-bound Sans CEN2 peptide, 
with a PDB ID of 2L7T (174 atoms), into fragments 
containing ∼ 20 atoms. As shown in Fig.  8 if the A-B 
edge is cut, two fragments of size 6 and 168 atoms are 
generated. Since 6 atoms is much smaller than the tar-
get size of 20 atoms, we do not consider the edge A-B 
part of the solution space.

In the present version of the fragmentation code, 
the solution space is constrained exclusively to single 
bonds. That is, only bonds with a bond order of one are 
permitted to be broken. From this point forward, we 
will refer to the complete collection of edges within the 
solution space as allowed edges. In this implementation, 
all allowed edges are, without exception, single bonds. 
Note that according to our definitions conjugated sys-
tems can include single bonds and consequently be dis-
rupted by fragmentation.

Fig. 7  Workflow for the optimisation of {βi} values. The numbering corresponds to each of the phases: (1) Initial data preparation; (2) Optimisation 
loop

Table 2  Initial datasets of {βi} values

βpe βconj βhyper βvol βcomp βvrange

0.2 0.1 0.1 0.2 0.1 0.3

0.2 0.1 0.1 0.2 0.2 0.2

0.2 0.1 0.1 0.3 0.1 0.2

0.2 0.1 0.1 0.4 0.1 0.1

0.2 0.1 0.2 0.2 0.1 0.2

0.2 0.1 0.2 0.3 0.1 0.1

0.2 0.1 0.3 0.2 0.1 0.1

0.2 0.2 0.1 0.2 0.1 0.2

0.2 0.2 0.1 0.3 0.1 0.1

0.2 0.2 0.2 0.2 0.1 0.1

0.2 0.3 0.1 0.2 0.1 0.1

0.3 0.1 0.1 0.2 0.1 0.2

0.3 0.1 0.1 0.3 0.1 0.1

0.3 0.1 0.2 0.2 0.1 0.1

0.3 0.2 0.1 0.2 0.1 0.1

0.4 0.1 0.1 0.2 0.1 0.1

Fig. 8  Ball and stick model of MFS-bound Sans CEN2 peptide 
(PDB ID: 2L7T) displaying an unallowed edge between atoms 
A and B. See text for more information
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Initial guess
To enhance the optimiser’s capability in identifying 
optimal solutions, we supply a collection of preliminary 
approximations. These are instances of fragmentation 
that represent initial fragment groups.

For formulating these initial guesses, we commence 
by eliminating all permissible edges from the molecular 
graph of the system, essentially breaking all bonds within 
the solution space. This process results in a group of 
diminutive fragments, which we will call primitive mon-
omers. The fragments constituting the initial guess are 
subsequently assembled in a recursive manner by com-
bining these primitive monomers, following the method-
ologies outlined in Algorithms 1 and 2.

Algorithm 1  Constructing initial guess for fragmentation instance

In Algorithm 1, we require a reference point ref _pointi 
as an input to select a reference primitive monomer 
( ref _mon ) to begin construction of the fragments. The 
computation of the set of reference points {ref _pointi} 
is dependent on system size and shape. Specifically, the 
Euclidean space occupied by the system is partitioned 
into three-dimensional rectangular intervals along the 
directions of the principal axes of inertia (the eigenvec-
tors of the inertia tensor), and the midpoint of these 
intervals are taken as the reference points, as shown in 
Fig. 9. The inertia tensor was used to ensure that the cal-
culation of the set of {ref _pointi} is invariant to transla-
tions, rotations and reflections in the geometry of the 
structure. Further detail on the computation of the 
reference points can be found in the Supplementary 
Information.

Algorithm  1 begins by initialising an empty fragment 
container which will contain the initial set of fragments 
obtained with ref _pointi . Lines 2 to 7 describe the strat-
egy of forming these fragments. The algorithm monitors 
the nodes being visited and continues to build fragments 
until all nodes have been visited. The construction of 
each fragment begins at the primitive monomer closest 
to ref _pointi that is unvisited (line 3). A fragment, frag 
on line 4, is built from ref _mon using Algorithm 2. The 

frag object is a collection of primitive monomers, and 
this fragment is then appended to the fragment container 
F. On line 6, the nodes within frag are marked as visited. 
This process is repeated until all nodes have been visited 
and the algorithm outputs a binary vector as the initial 
guess.

Algorithm 2 describes the procedure of constructing 
a fragment from a reference monomer ( ref _mon ). Two 
empty containers are initialised on lines 1 and 2. Both 
Q and M hold primitive monomers. However, Q repre-
sents a queue and M is a container that will contain the 
set of primitive monomers to form a fragment. Next, 
on lines 3 and 4 ref _mon is added to both containers. 
Lines 5 to 16 describe the procedure of constructing 
the fragment which is a collection of primitive mono-
mers. The algorithm uses a while loop and repeats until 
Q is empty.

Within each iteration of the while loop, Q is firstly 
dequeued and the first primitive monomer in Q is 
assigned to mon_v (line 6). Following, we iterate across 
the neighbouring primitive monomers (line 7) of 
mon_v , where mon_w denotes the neighbours and the 
visitation status of each neighbour is checked. If mon_w 
has not been visited, it is appended to Q and M (lines 
8 to 10). Next on line 11, the algorithm checks the size 
(number of atoms) of the growing fragment container 
M and if the size is ≥ 90% of the target fragment size 
( nt ), M is returned; otherwise the while loop continues. 
Algorithm  2 repeats until the fragment size condition 
(line 11) has been satisfied or until the list of neigh-
bouring monomers has been exhausted and Q becomes 
empty.

Fig. 9  Ball and stick figure of steric acid; top: displaying the principal 
axes of inertia (red, green and blue arrows); bottom: displaying 
the three rectangular intervals formed using the principal axes 
of inertia, and the reference points (red crosses). All rectangular 
interval edges are parallel to the principal axes of inertia
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Algorithm 2  Building fragment from reference monomer

Optimiser
The minimisation of the scoring function in Eq. (6) is per-
formed using a genetic algorithm (GA). This was selected 
as the optimiser for two main reasons. First, it is well 
suited to exploiting parallel computing architecture at 
scale, which in turn helps reduce execution time. Second, 
it is particularly adept at identifying global minima in 
complex combinatorial challenges [39], such as the frag-
mentation problem we address, where we aim to find the 
optimal combination of edges to cut and leave intact.

Within the framework of our GA implementation, each 
individual within the population represents a distinct 
fragmentation scenario or a set of fragments. The start-
ing population is comprised of initial guesses, originating 
from a dataset specifically prepared for this purpose, as 
discussed in Section 3.1.2.

In the implementation, each gene in an individual 
corresponds to an allowed edge. As described in Sec-
tion 3.1.1 concerning the solution space, genes can only 
take on two possible values: 0 and 1. The total number 
of parents selected for mating is two if the population 
size is less than or equal to eight, and it is ⌊0.25×popula-
tion size⌋ otherwise. Parents are selected according to the 
tournament selection technique [58]. The crossover type 
is a single-point crossover [49] and mutation is random 
and occurs by replacement.

Algorithm 3  Iteration of the genetic algorithm

The GA approach involves an iterative procedure that 
aims to explore the solution space by allowing fit indi-
viduals to mate and pass its genes to the next genera-
tion. Algorithm  3 describes the procedure of creating 
the next generation in the GA scheme implemented. 
The fragmentation algorithm monitors the ‘global’ indi-
vidual ( best_sol ) with the minimum score ( min_score ). 
Fit individuals (parents) are chosen from the previous 
generation (line 2) and are used to create the offspring 
for the next generation via crossover (line 3). The solu-
tion with the minimum fitness in the next generation 
( local_min_score ) is compared to min_score , and the 
global individual and minimum score are updated if 
a solution with a lower score is found (lines 9 to 10 of 
Algorithm  3). This iterative process is repeated until 
either the maximum number of iterations has been 
reached or if the minimum score has not changed for 
more than 50 iterations. A maximum number of itera-
tions of 100 was adopted for all our computational 
experiments.

To guide the optimiser in locating good quality solu-
tions (low score from Eq. (6)), we utilise the dimer energy 
(Eq.  (32)) to further restrict the solution space through-
out the optimisation procedure. The dimer energy cor-
rection �EIJ is calculated as

where EIJ represents the energy of the dimer and EI and 
EJ are the energies of the monomers. The value of �EIJ 
provides a measure of the energy perturbation when the 

(32)�EIJ = EIJ − EI − EJ
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bond(s) connecting the two monomers in a dimer is/
are broken. A force field treatment (UFF) is used for the 
calculations of the energies ( EIJ , EI and EJ ). As an exam-
ple consider Fig. 10, where a C-C bond is broken in the 
dimer ( FIJ ) to produce two monomers ( FI and FJ).

If the dimer energy correction corresponding to an 
edge being cut exceeds a threshold value, this edge 
is blacklisted and the corresponding bond remains 
unbreakable in future iterations. The threshold value 
used is 10 kJ mol−1.

The evaluation of the dimer energy correction for each 
edge being cut is performed within the scoring func-
tion calculation for each individual in Algorithm  3. The 
procedure of blacklisting edges is limited to the first ten 
iterations of a GA procedure. Otherwise if this contin-
ues across the entire optimisation procedure, there is the 
risk of potentially rendering the set of blacklisted edges 
to be too large and prevent the optimiser from explor-
ing diverse solutions. By excluding edges associated with 
large dimer energies from the solution space, we steer the 
optimiser towards an energetically favourable solution 
that preserves the integrity of the chemical environment.

Fragmentation algorithm
Dealing with the complex optimisation challenge of opti-
mally dividing a system into Nf  fragments, each with 
approximately nt atoms, proves arduous for the opti-
miser. As molecular systems grow, the difficulty escalates. 
The optimiser struggles to fragment the system in a fea-
sible number of iterations, hindered by the exponential 
growth in the combinations of bonds.

To mitigate this issue, we have adopted a recursive frag-
mentation approach. With this approach, a GA optimiser 
instance will need to consider a significantly lower num-
ber of potential broken bonds at any given time. In turn, 
breaking a smaller number of bonds results in a smaller 
cumulative effect on the score, enabling the optimiser to 

distinguish better between bonds that lead to low and 
high energy perturbations. Furthermore, the reduction in 
the problem size that comes with this recursive strategy 
also means less degenerate solutions for the optimiser to 
consider.

In the recursive procedure, the molecular system is 
initially partitioned into n larger fragments and each of 
these fragments is then broken up further. This process is 
repeated until the fragments are sufficiently close to the 
target fragment size.

This recursive procedure is exemplified in Fig.  11, 
where we fragment a 174-atom protein system (MFS-
bound Sans CEN2 peptide, PDB ID: 2L7T), aiming for 
fragments of approximately 20 atoms. Initially, the algo-
rithm splits the system into five larger fragments of 31, 
35, 38, 36, and 42 atoms, respectively. These fragments 
are then further subdivided to achieve fragments nearing 
the desired 20-atom size. After two fragmentation stages, 
ten fragments emerge, each averaging approximately 19 
atoms.

Figure  12 graphically illustrates the final automatic 
fragmentation algorithm. The process starts by analys-
ing the molecular system, which involves categorising 
node and edge attributes and identifying conjugated and 
hyperconjugated areas. Subsequently, the system under-
goes recursive fragmentation, incorporating a series of 
genetic algorithm optimisation steps. Following each 
fragmentation phase, the resulting fragment sizes (||s||) 
are assessed against the target size ( nt ). If a fragment 
exceeds the target size, it undergoes further recursive 
fragmentation.

Results and discussion
Optimisation of scoring function weights
Figure  13 displays the evolution of the minimum value 
of the objective function f (Eq.  (31)) over the course of 
the Bayesian optimisation procedure as described in 
Sect. 2.4. Within the first five iterations, there is a drastic 

Fig. 10  Ball and stick figure of two separate monomers ( FI and FJ ) and the dimer ( FIJ ) composing these monomers. Atoms coloured black, blue, red 
and white correspond to carbon, nitrogen, oxygen and hydrogen, respectively. Red broken line denotes a broken bond
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drop in the minimum value from 0.38152 to 0.30799. 
Past this, the rate at which the minimum value decreases 
slows down considerably, indicating a relatively flat opti-
misation surface. A duration of approximately 100 itera-
tions were required for the occurrence of the next three 
minimum values; the final minimum value of 0.29205 
(see black arrow in Fig.  13 at iteration number 445) 
occurred 135 iterations after the previous. After 200 iter-
ations of no change in the minimum value, the optimi-
sation procedure was terminated and the corresponding 
{βi} values at iteration number 445 were employed in the 
fragmentation algorithm.

Table 3 shows the set of {βi} values that minimise the 
scoring function (Eq.  6) against the objective function 
(Eq. 31).

The term carrying the largest weight in the scor-
ing function is hyperconjugation ( βhyper = 0.313325 ), 
which is immediately followed by the volume range 

( βvrange = 0.294074 ). As detailed in Sect.  2.3.2, the six 
penalty terms in the scoring function are divided into 
two primary classes: one focusing on maintaining the 
chemical landscape (encompassing potential energy, 
conjugation, and hyperconjugation), and the other on 
managing fragment size (including volume, the num-
ber of fragments/components, and volume range). It is 
noteworthy that the two most heavily weighted factors-
hyperconjugation and volume range-belong to these dis-
tinct classes. Moreover, the aggregated weights of penalty 
terms involved in maintaining the chemical environment 
(0.595084) is greater than that of controlling the frag-
ment size (0.404916). This difference in weight distribu-
tion between the two categories implies there is a greater 
importance to preserving the chemical environment. 
Later, we show that a good balance between the pres-
ervation of the chemical environment and partitioning 

Fig. 11  Example of the recursive fragmentation scheme with MFS-bound Sans CEN2 peptide (PDB ID: 2L7T). Target fragment size is 20 atoms. 
Number of atoms listed for fragments includes hydrogen caps
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the system into appropriately sized fragments is been 
achieved with these weights.

The number of components/fragments exhibits the 
lowest weight of βcomp = 0.001426 . The low weighting for 
βcomp is likely influenced by the inclusion of the volume 
term ( pvol ) in Equation (6). As discussed in Section 2.3.2, 
the volume penalty term aims to penalise fragmenta-
tion instances where the fragments significantly deviate 
from the desired target size. Similarly, pcomp decreases 
in value as the number of fragments increases, serv-
ing a comparable purpose. These factors both encour-
age fragmentation, but with the presence of pvol , the 
impact of pcomp diminishes. The comparative magnitudes 
of these weights, where βvol = 0.109416 is larger than 
βcomp = 0.001426 , underscores their primary function of 
reducing the extent of double-counting.

Due to the small magnitude of βcomp compared to the 
other {βi} values, we performed a two-tailed t-test on the 
set of 800 systems (Dataset  1) to examine its statistical 
significance. This involved comparing results obtained 
with βcomp = 0.001426 and βcomp = 0 . For βcomp = 0 , 
the remaining {βi} values were normalised to ensure 
∑

i βi = 1 (listed in Table  4). In particular, the quantity 
compared in the t-test is similar to Eq. (31), where each 
molecular system has a fitness value given by

where pvol , S and �E are evaluated identical to those in 
Eq. (31). A t-value of 0.014 is obtained and is substantially 
smaller than the critical t-value of 1.961 at the α = 0.05 
level. Consequently, due to the presence of βcomp being 
statistically insignificant at the α = 0.05 level, we remove 
pcomp from the scoring function altogether and utilise the 
weights listed in Table 4 for the remainder of this Article.

Since the weights of the scoring function terms were 
optimised on Dataset 1, the following text concerns the 
application of QFRAGS with the optimised {βi} values to 
Dataset 1.

Figure  14 shows the distribution of the average frag-
ment size as well as the energy errors obtained with 
MBE truncated at the two-body and three-body lev-
els for Dataset  1. The vast majority of systems in Data-
set  1 (81.9%) exhibited average fragment sizes ranging 
between 35 and 50 atoms. Furthermore, 83.0% of systems 
exhibited average fragment sizes less than the target size 
of 50 atoms. These resulting fragment sizes are encourag-
ing for our purposes; the standard deviation of 5.5 atoms 
is relatively small (approximately 10% of the target frag-
ment size) and the majority of the average fragment sizes 
do not exceed the target fragment size. Exceeding the tar-
get fragment size can be problematic due to the growing 
size of larger fragments (e.g. dimers and trimers) which 

(33)f =

1

2
pvol +

1

2
S(�E)

Fig. 12  The automatic fragmentation algorithm. The numbering 
corresponds to different sections of the algorithm: (1) Recursive 
fragmentation; (2) Genetic algorithm

Fig. 13  Evolution of the minimum value of f (Eq. (31)). Arrow 
indicates the occurrence of the final minimum value of f at iteration 
number 445

Table 3  The set of optimal {βi} values obtained from Bayesian 
optimisation

βpe βconj βhyper βvol βcomp βvrange

0.135816 0.145943 0.313325 0.109416 0.001426 0.294074
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can lead to memory and convergence issues in fragmen-
tation-based ab initio calculations. We will show later in 
Sect.  4.2.2 that the distribution of the average fragment 
size narrows with larger system sizes (above 500 atoms).

Regarding the accuracy of total energies, Dataset  1 
exhibits relatively low error margins. The mean absolute 
errors (MAE) are 20.7 and 2.2  kJ mol−1 for MBE2 and 
MBE3, respectively. At the MBE3 level, 84.5% of the sys-
tems yielded errors smaller than 4.2 kJ mol−1 , compared 
to 29.0% for MBE2. The significant improvement in error 
rates with MBE3 is expected, as MBE3 accounts for more 
chemical interactions by incorporating trimers.

The set of {βi} values in Table  4 is used in the cur-
rent implementation of our automated fragmentation 
algorithm. The subsequent section reports the results 
obtained from applying QFRAGS to both Dataset 2 and 
Dataset  3. In the future, we endeavour to expand the 
application of the fragmentation scheme beyond protein 
systems, and will re-optimise the weights against a more 
diverse range of chemical systems.

Application of QFRAGS
Datasets
In this Section, we apply QFRAGS with the optimised 
{βi} values in Table  4 to Datasets 2 and 3. We demon-
strate the ability of the automated fragmentation proce-
dure to generate fragment sizes close to the input target 
fragment size and report on its accuracy by comparison 
of the single point energies obtained with and without 
fragmentation. The rationale for employing two distinct 
test datasets is to examine the impact of system size on 
energy deviations and fragment dimensions.

Fragment size
Figure  3 presents the size distribution of protein sys-
tems in Datasets 2 and 3. Dataset  2, with a maximum 
of 408 atoms, features smaller systems in comparison 
to Dataset 3, where the largest structure includes 1396 
atoms.

The distributions of average fragment sizes for Data-
set 2 and Dataset 3 are shown in Fig. 15. In Dataset 2, 
a predominant proportion (81.5%) of systems display 
mean fragment sizes ranging from 35 to 50 atoms. 
Conversely, Dataset  3’s distribution is narrower, with 
85.0% of its systems having average fragment sizes 
within the 40 to 50 atom range, compared to only 65.0% 
in Dataset  2. This variance in distribution patterns is 
further evident in their standard deviations: Dataset  2 
has a higher standard deviation of 5.3 atoms, while 

Fig. 14  left: Distribution of the average fragment size of Dataset 1; right: Distribution of absolute energy errors at the MBE2 and MBE3 levels 
of Dataset 1. All energies were calculated at the HF/6-31G* level of theory. Averages are indicated by vertical lines and the corresponding values are 
reported. Error bars correspond to one standard deviation

Table 4  The set of adjusted optimal {βi} values after removal of 
βcomp

βpe βconj βhyper βvol βvrange

0.136010 0.146151 0.313773 0.109573 0.294494
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Dataset  3’s is 3.2 atoms. These differences are attrib-
utable to the recursive fragmentation process and the 
presence of larger molecular systems in Dataset  3. 
Given that both datasets aim for a target fragment size 
of 50 atoms, Dataset  3 undergoes more fragmenta-
tion recursions than Dataset 2. Additionally, the larger 
systems in Dataset 3 offer more possibilities for divid-
ing the system into 50-atom fragments. Consequently, 
Dataset  3 exhibits a more concentrated distribution, 
closely aligning with the target fragment size.

For both datasets, there is a very small number of 
molecular systems that, when fragmented, exhibit 

mean fragment sizes greater than 50 atoms; this is true 
for 16.0% and 0.0% of systems in Dataset  2 and Data-
set 3, respectively. This was also observed for Dataset 1 
and the favourable implications of this were discussed 
earlier in Section 4.1.

Single point energies
Using the fragments produced by QFRAGS, the total 
energy of molecular systems in Datasets 2 and 3 was 
calculated at the HF/6-31G* level using the Many-Body 
Expansion method. The MBE calculations were truncated 
at the two-body and three-body levels. Subsequently, 

Fig. 15  Average fragment size distribution of Dataset 2 and Dataset 3. Averages are indicated by vertical lines and the corresponding values are 
reported. Error bars correspond to one standard deviation

Fig. 16  Distribution of absolute energy errors at the MBE2 and MBE3 levels for Dataset 2 and Dataset 3. All energies were calculated 
at the HF/6-31G* level of theory. Averages are indicated by vertical lines and the corresponding values are reported. Error bars correspond to one 
standard deviation
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energies derived from fragmentation were compared 
with those obtained from full system (unfragmented) cal-
culations at the same HF/6-31G* level.

Figure 16 presents the distributions of absolute errors 
at the MBE2 and MBE3 levels. For both datasets, a 
noticeable reduction in the absolute error is observed 
as the MBE level increases from dimers to trimers. This 
reduction is exemplified by the change in MAEs when 
transitioning from MBE2 to MBE3. Specifically, in Data-
set 2, the MAE decreases from 20.0 to 2.2 kJ mol−1 and in 
Dataset 3, the MAE reduces from 181.5 to 24.3 kJ mol−1 . 
This improvement in energy accuracy is anticipated and 
can be attributed to the inclusion of interaction energies 
in trimers. These findings align with existing literature on 
hierarchical fragmentation methods [5, 17, 30, 34].

Comparing the two datasets, Dataset 2 exhibits much 
lower errors than Dataset  3. The MAEs of Dataset  3 
are 161.5 and 22.2 kJ mol−1 greater than those of Data-
set 2 at the MBE2 and MBE3 levels, respectively. At the 
MBE3 level, 84.5% and 16.0% of systems in Dataset  2 
and Dataset  3, respectively, achieved errors less than 
4.2 kJ mol−1 . The higher errors and lower occurrence of 
accurate results in Dataset  3 are due to the prevalence 
of larger systems; the average system size in Dataset 3 is 
1021 atoms whereas the average system size in Dataset 2 
is 277 atoms. The same target fragment size of 50 atoms 
was used to fragment systems in both datasets. With the 
systems in Dataset 3 being larger than those in Dataset 2, 
the number of fragments generated in Dataset 3 will be 
greater than those in Dataset  2. Correspondingly, more 
bonds are being broken in the systems belonging to Data-
set 3, leading to larger absolute errors.

To better understand the system size’s impact, we have 
included the relative error results in Fig. 17. These errors 
are calculated by dividing the absolute error by the total 
electron count in the system. Fig. 17 shows the distribu-
tion of relative errors for both datasets.

The mean relative error in Dataset  3 at the MBE2 
level is 0.051  kJ  mol−1 per electron compared to the 
0.018  kJ mol−1 of Dataset  2. Conversely, at the MBE3 
level, both datasets exhibit the same relative error of 
0.002 kJ mol−1 per electron.

Hence, when normalised for system size, at both MBE2 
and MBE3 levels, relative errors for the two datasets 
remain within the same order of magnitude. This con-
trasts with the absolute errors, where Dataset 3’s MAEs 
for both MBE2 and MBE3 were consistently larger than 
those of Dataset 2 by an order of magnitude. These find-
ings suggest that, by considering system size, QFRAGS 
can achieve comparable relative errors across a broad 
spectrum of system sizes, ranging from 158 to 1396 
atoms.

Comparison to manual fragmentation
To demonstrate the advantage of the proposed fragmen-
tation scheme, we compare the results of QFRAGS on 
two samples of 20 protein systems randomly selected 
from Dataset 1 and Dataset 2 to three manual fragmenta-
tion approaches specific to protein systems.

The manual fragmentation approaches will be called 
naive, semi-naive, and non-naive and corresponding 
fragments are obtained by severing the C-N amide, Cα-
N, and Cα -C bonds, respectively. Figure 18 illustrates the 
three different manual fragmentation schemes. These 
three fragmentation approaches have been explored 

Fig. 17  Distribution of relative energy errors at the MBE2 and MBE3 levels for Dataset 2 and Dataset 3. Averages are indicated by vertical lines 
and the corresponding values are reported. Error bars correspond to one standard deviation. See text for definition of relative errors
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within literature and it has been consistently demon-
strated that the order of increasing accuracy generally 
follows the order of cutting the C-N amide, Cα-N, and 
Cα -C bonds [33, 55, 68].

To control for fragment size, as part of the criteria for 
bond breaking a fragment size of 50 atoms was selected 
to match the target fragment size used in QFRAGS.

The sample of 20 structures from Dataset 1 contain sys-
tems ranging between 170 and 396 atoms whereas from 
Dataset  2 the 20 structures comprise between 193 and 
400 atoms. The naming of these structures consists of 
two parts, the first is the PDB code of the original system 
the system of interest was generated from (see Sect. 2.1). 
The second part is a subscript which simply indexes the 

corresponding fragment. For example, 2 LTX2 refers to a 
structure that was obtained from fragmenting the protein 
system with the PDB code of 2LTX, and the subscript of 2 
indexes the second fragment.

Figure  19 shows the distribution of average fragment 
sizes for the two samples of 20 protein systems using the 
four distinct fragmentation schemes. For the systems 
from Dataset  1, the naive and non-naive methods yield 
fragments averaging between 40 and 48 atoms in size. 
Similarly, the semi-naive method produces fragments 
with average sizes ranging from 38 to 49 atoms. In con-
trast, the QFRAGS approach results in fragments averag-
ing between 36 and 50 atoms. The fragment sizes derived 
from the three manual methods (naive, semi-naive, and 
non-naive) are more closely aligned with the target size 
of 50 atoms compared to QFRAGS. A similar outcome 
can be observed for structures of Dataset  2 where the 
range of fragment sizes of QFRAGS is larger than those 
of the manual schemes. Nonetheless, there is a substan-
tial overlap in the average fragment sizes among protein 
systems across all fragmentation schemes.

Figure  20 shows the mean absolute energy errors cal-
culated using two fragmentation methods (MBE and 

Fig. 18  Definition of the three different manual fragmentation 
schemes employed for the 20 protein systems: naive, semi-naive 
and non-naive. R1 and R2 denote arbitrary side groups of amino acids

Fig. 19  Distribution of average fragment size obtained 
from fragmenting 20 proteins randomly selected from a Dataset 1; 
and b Dataset 2 using the various bond breaking schemes: naive, 
semi-naive, non-naive and QFRAGS

Fig. 20  Mean absolute energy errors of various bond 
breaking schemes (naive, semi-naive, non-naive and QFRAGS) 
with the fragmentation methods FMO2/3 and MBE2/3 levels 
across 20 protein systems randomly selected from a) Dataset 1; 
and b) Dataset 2. Error bars correspond to one standard deviation. 
See text for system description of the various bond breaking schemes
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FMO) at the dimer and trimer levels across the four 
fragmentation schemes for structures of Dataset  1 and 
Dataset 2. Across all 40 protein systems, the MBE2 and 
MBE3 MAEs across the four fragmentation schemes are 
all within the same order of magnitude. The MBE2 MAEs 
range between 41.8 and 58.5  kJ mol−1 , and the MBE3 
MAEs range between 3.2 and 9.9  kJ mol−1 for systems 
in Dataset 1. Whilst for Dataset 2, MBE2 MAEs ranged 
between 19.4 and 42.5 kJ mol−1 and MBE3 MAEs ranged 
between 2.0 and 4.0 kJ mol−1.

It should be noted that since the weights of the scoring 
function were trained on systems belonging to Dataset 1 
with MBE, there will be some bias in the MBE results 
from QFRAGS. It is for this reason that we include sys-
tems from Dataset 2. The above results demonstrate the 
similarity in the behaviour of MBE for systems belonging 
to and outside of the training set (Dataset 1).

For Dataset  1 structures the FMO errors associated 
with the non-naive and QFRAGS are consistently an 
order of magnitude smaller than the naive and semi-
naive schemes. Specifically, the FMO2 MAEs of the 
naive (55.1 kJ mol−1 ) and semi-naive (74.9 kJ mol−1 ) are 
both an order of magnitude larger than those of the non-
naive (3.3  kJ mol−1 ) and QFRAGS (8.5  kJ mol−1 ). This 
also holds true for FMO3 where the MAEs of the naive 
(2.5 kJ mol−1 ) and semi-naive (1.1 kJ mol−1 ) fragmenta-
tion schemes are greater than those of the non-naive 
(0.4 kJ mol−1 ) and QFRAGS (0.4 kJ mol−1 ) schemes.

Compared to the FMO results of structures belong-
ing to Dataset 1, those of Dataset 2 contrast in two ways. 
Firstly, the FMO2 MAEs of all three manual fragmen-
tation schemes are an order of magnitude larger than 
QFRAGS. Secondly, the FMO3 MAEs of semi-naive, 
non-naive and QFRAGS are all within the same order 
of magnitude (less than 1 kJ mol−1 ). However, these dif-
ferences only occur for the semi- and non-naive manual 
fragmentation schemes; the behaviour of QFRAGS is 
consistent across systems in Dataset 1 and Dataset 2.

These differing results between MBE and FMO, spe-
cifically, the errors of FMO being generally lower than 
those of MBE, highlight the importance of the treatment 
of bond breaking and inclusion of electrostatic potentials 
in fragmentation methods. MBE fragment calculations 
do not employ electrostatic potentials and use hydrogen 
capping to restore valence at the site of broken bonds. 
The inclusion of hydrogen caps has the potential to per-
turb the electronic environment and introduce spurious 
steric effects [67]. Meanwhile, in FMO, fragment energy 
calculations are performed in the electrostatic poten-
tial of surrounding fragments, and furthermore FMO 
avoids introducing hydrogen caps, and instead the AFO 
approach is used to treat the broken bonds [38, 47]. The 

effects of such variability between MBE and FMO are 
best exemplified through the three-body errors of 2 LTX2 
fragmented with the non-naive approach, where the 
MBE3 error (94.2  kJ mol−1 ) is two orders of magnitude 
larger than that of FMO3 (0.2 kJ mol−1).

Furthermore, the MAEs of FMO3 across all four frag-
mentation schemes are consistently lower than those of 
MBE3. On the other hand, the FMO2 MAEs are either 
the same order of magnitude or an order of magnitude 
less than those of MBE2. Such observations are consist-
ent with the literature on fragmentation methods con-
cerning electrostatic potentials; methods that include 
electrostatic potentials typically outperform those lack-
ing it [19, 30, 65], albeit being more computationally 
demanding than the latter.

Furthermore, it is important to recognise that the three 
manual approaches (naive, semi-naive and non-naive) 
are suited to protein systems only, whereas QFRAGS 
possesses no information on the amino acid makeup of 
the protein systems. On the other hand, the naive, semi-
naive and non-naive approaches are specifically tailored 
to amino acids because these schemes only consider 
breaking bonds that are found in protein systems. Yet 
despite this lack of amino acid information, the proposed 
QFRAGS method is able to achieve MAEs of the same 
order of magnitude as the three manual fragmentation 
methods at both the MBE2 and MBE3 levels, outper-
form the naive and semi-naive schemes with two- and 
three-body FMO calculations and is comparable to the 
accuracy of the non-naive scheme with both FMO2 and 
FMO3.

Application to glycolipids and lipoglycans
To demonstrate the applicability of QFRAGS beyond 
protein systems, we applied it to a set of 10 glycolipid and 
lipoglycan systems ranging between 368 and 727 atoms, 
with an average of 455 atoms. Unlike proteins, which 
are composed of well-defined monomeric units (amino 
acids), these structures lack an intuitive monomeric unit 
due to the varied lipid component and consequently their 
manual fragmentation poses a challenging task. Conse-
quently, we selected these structures to analyse the per-
formance of QFRAGS.

Table 5 summarises the results of applying QFRAGS to 
the glycolipid and lipoglycan systems including the aver-
age fragment size and MBE2/3 errors. With the exception 
of one system, the average fragment size is consistently 
less than the target fragment size of 50 atoms. In fact, the 
majority of systems (60%) exhibit average fragment sizes 
ranging between between 40 and 45 atoms.

Concerning the energy errors, the largest MBE2 
error (27.9  kJ  mol−1 ) belongs to largest system (727 
atoms) and this error reduces to 0.1  kJ mol−1 with the 
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inclusion of trimer energies. Across the 10 systems, the 
MAE decreases from 7.9 kJ mol−1 at the two-body level 
to 0.3 kJ mol−1 at the three-body level. Once again, this 
decrease in the MAE is ascribed to the inclusion of inter-
action energies of trimers. Such results highlight the 
accuracy of QFRAGS even on systems beyond proteins, 
the systems where the weights of Eq. (6) were trained on. 
With the results above, together, these outcomes dem-
onstrate QFRAGS’ capability of generating fragments of 
a specific size, its accuracy, and its applicability beyond 
protein systems.

Conclusion
In this study, we introduced an innovative, automated 
molecular fragmentation approach, QFRAGS, char-
acterised by its evolutionary optimisation of a scoring 
function. The proposed approach hinges on three main 
innovations.

First, the fragmentation process is fully automated, 
eliminating the need for manual intervention.

Second, traditional energy metrics, which are impracti-
cal for large molecular systems, are replaced by a multi-
factor scoring function. This function integrates chemical 
information and implementation aspects, offering a more 
feasible and effective alternative for fragmenting complex 
systems.

Third, our approach employs evolutionary strategies 
to optimise the scoring function. This actively seeks out 
fragmentation schemes that indirectly minimise energy 
discrepancies when compared to the energy of the 
unfragmented, reference system.

The scoring function’s weights were fine-tuned using 
800 protein systems, each comprising 108 to 455 atoms. 
Using the optimised weights, QFRAGS was then applied 

to over 1000 protein systems with atom counts ranging 
from 108 to 1396 atoms, targeting fragment sizes of 50 
atoms. For systems with less than 500 atoms, the mean 
fragment sizes achieved with QFRAGS varied between 
32 and 65 atoms. In larger systems (505 to 1396 atoms), 
the average fragment sizes improved, ranging between 37 
and 50 atoms. These results show QFRAGS’ efficiency in 
generating fragments that align well with the desired tar-
get size.

Using the fragments generated by QFRAGS, total 
energies were calculated at the two-body and three-
body levels using the Many Body Expansion method, 
with HF/6-31G* as the theory level. The mean abso-
lute errors for systems less than 500 atoms were 20.6 
and 2.2 kJ mol−1 at the MBE2 and MBE3 levels, respec-
tively. For larger systems (505 to 1396 atoms), the MAEs 
increased to 181.5 and 24.3  kJ mol−1 at the MBE2 and 
MBE3 levels, respectively.

Then, a comparison of QFRAGS to three manual frag-
mentation approaches (naive, semi-naive and non-naive) 
specific to protein systems was performed on 40 protein 
structures ranging between 170 and 400 atoms. Total 
energies were calculated with two fragmentation meth-
ods: the Many Body Expansion and the Fragment Molec-
ular Orbital, both at the two-body and three-body levels. 
All fragmentation strategies generated fragments with 
similar average sizes close to the target fragment size of 
50 atoms. With MBE, the MAEs across QFRAGS and 
the three manual fragmentation schemes are all within 
the same order of magnitude. At the MBE2 level, MAEs 
ranged between 19.4 and 58.5  kJ mol−1 , meanwhile at 
MBE3 level, the MAEs fell between 2.0 and 9.9 kJ mol−1 . 
On the other hand with the fragment molecular orbital 
method, the accuracy of QFRAGS (FMO2 and FMO3 
MAEs of 6.6 and 0.4 kJ mol−1 , respectively) are compa-
rable that of the non-naive scheme (FMO2 and FMO3 
MAEs of 9.2 and 0.4 kJ mol−1 , respectively) at both the 
two- and three-body levels. Both of these schemes are 
consistently an order of magnitude less than the corre-
sponding MAEs of the naive (FMO2 and FMO3 MAEs 
of 43.4 and 2.1  kJ mol−1 , respectively) and semi-naive 
(FMO2 and FMO3 MAEs of 63.0 and 1.0  kJ  mol−1 , 
respectively) approaches.

Following, QFRAGS was applied to 10 glycolipid 
and lipoglycan systems to demonstrate its applicabil-
ity beyond protein systems and yielded MAEs of 7.9 and 
0.3 kJ mol−1 at the two- and three-body levels with MBE, 
respectively.

The results of this study demonstrate the efficacy of the 
newly proposed automated fragmentation scheme in var-
ious aspects. QFRAGS is capable of generating fragments 
that closely match the desired size. When integrated with 
MBE and FMO fragmentation methods, it achieves an 

Table 5  Performance of QFRAGS for glycolipid and lipoglycan 
systems. MBE2/3 errors are reported in kJ mol

−1 . System name 
corresponds to the HMDB ID

System Average MBE2 MBE3
Fragment size Error Error

0011945 41.8 − 14.6 − 0.2

0011957 40.9 7.8 0.4

0011959 41.2 − 1.3 0.0

0012117 42.3 − 8.6 − 0.2

0012121 47.8 3.7 − 0.1

0012123 47.1 3.0 0.5

0012124 44.5 0.3 − 0.1

0012125 51.8 6.4 − 1.0

0012232 48.7 5.0 0.0

0013470 40.4 27.9 0.1
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approximation of the total energy that rivals that of man-
ual, non-naive fragmentation. Furthermore, QFRAGS is 
generalisable to organic systems beyond proteins. Finally, 
this study corroborates the importance of employing 
high-quality fragments and carefully selecting the bonds 
to be broken in molecular fragmentation approaches.

Section title of first appendix
An appendix contains supplementary information that is 
not an essential part of the text itself but which may be 
helpful in providing a more comprehensive understand-
ing of the research problem or it is information that is too 
cumbersome to be included in the body of the paper.
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