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Abstract 

Chemical engineers heavily rely on precise knowledge of physicochemical properties to model chemical 
processes. Despite the growing popularity of deep learning, it is only rarely applied for property prediction due 
to data scarcity and limited accuracy for compounds in industrially-relevant areas of the chemical space. Herein, 
we present a geometric deep learning framework for predicting gas- and liquid-phase properties based on novel 
quantum chemical datasets comprising 124,000 molecules. Our findings reveal that the necessity for quantum-
chemical information in deep learning models varies significantly depending on the modeled physicochemical 
property. Specifically, our top-performing geometric model meets the most stringent criteria for “chemically 
accurate” thermochemistry predictions. We also show that by carefully selecting the appropriate model featurization 
and evaluating prediction uncertainties, the reliability of the predictions can be strongly enhanced. These 
insights represent a crucial step towards establishing deep learning as the standard property prediction workflow 
in both industry and academia.

Scientific contribution
We propose a flexible property prediction tool that can handle two-dimensional and three-dimensional molecular 
information. A thermochemistry prediction methodology that achieves high-level quantum chemistry accuracy 
for a broad application range is presented. Trained deep learning models and large novel molecular databases of real-
world molecules are provided to offer a directly usable and fast property prediction solution to practitioners.

Keywords  Artificial intelligence, Deep learning, Thermochemistry, Liquid-phase thermodynamics, Representation 
learning

Introduction
Chemical engineering hinges on accurate understanding 
of physicochemical properties to effectively model 
processes, design products, and assess environmental 
impacts [1–3]. Since experimental determination of all 
properties of every chemical compound is practically 
infeasible, they are typically estimated computationally 
[4]. The classical property prediction toolkit comprises, 
next to quantum chemical calculations, empirical 
methods such as group contributions. Although various 
machine learning (ML) approaches have shown higher 
accuracies and wider application ranges than empirical 
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methods [5, 6], they are not yet a standard tool for many 
researchers.

Industrial experts emphasize the pressing need for 
faster and more accurate property prediction methods. 
These methods should consistently predict properties 
with high accuracy, particularly of chemical structures 
that are found in various industrial processes, thereby 
enabling faster decision-making [7, 8]. The target 
accuracy for a computational method is only well-
defined for thermochemistry, where “chemical accuracy” 
(approximately 1  kcal  mol−1) is demanded to construct 
thermodynamically consistent kinetic models [9, 10]. By 
extending this definition, it is reasoned that “chemically 
accurate” octanol–water partitioning coefficients 
(logKOW) correspond to errors below 0.7 log units [11]. 
On the other hand, relative accuracies are suggested 
for other thermodynamic properties in analogy to 
process modeling assessment [12]. The main limitation 
of molecular machine learning models is the lack of 
high-quality data, which hampers their reliability and 
application range. To overcome challenges related to the 
low data regime, methods such as transfer learning and �
-ML have increasingly been adopted. In transfer learning, 
a model is trained on a large database with low-accuracy 
data and a vast application domain to learn a molecular 
representation [13–15]. The knowledge from that model 
is then “transferred”; that is, the model is trained for 
a few epochs on a small dataset with highly accurate 
data to finally obtain a model that can predict with the 
accuracy of the small dataset for the application range of 
the large dataset. �-ML consists of training a model on 
the residual between high-quality and low-quality data 
[16, 17]. This method is especially effective for quantum 
chemical data, where a consistent difference exists 
between high level-of-theory and low level-of-theory 
data.

Graph neural networks, particularly message-passing 
neural networks (MPNN), have emerged as the primary 
model type for property prediction. The neural message-
passing framework was introduced in 2017 by Gilmer 
et  al. [18]. Initially, these models only considered two-
dimensional (2D) information with a string-based 
identifier as the sole input. A molecule is mathematically 
represented as a graph, with the nodes representing 
the atoms and the edges representing the bonds. 
The molecular graph is then converted with a graph-
traversing algorithm into a numerical representation, 
which is the input for a nonlinear regression model, 
typically a neural network. The algorithm’s core 
comprises the message-passing phase, where atom 
representations are iteratively updated using “messages” 
from neighboring atoms. Yang et  al. [19] adapted this 
framework to directed MPNNs (D-MPNN) in which 

messages are related to directed edges rather than nodes. 
The inclusion of directed edges was motivated to prevent 
noise in the model training by avoiding unnecessary 
loops during the message-passing stage. The inclusion of 
3D molecular information in a D-MPNN necessitates the 
handling of DFT-optimized 3D molecular coordinates. 
Such 3D models fall under the umbrella term geometric 
deep learning and are reviewed in detail by Atz et al. [20] 
and Duval et  al. [21]. There are various approaches to 
combine 3D information and MPNNs. Biswas et al. [22] 
incorporated quantum chemically calculated descriptors 
in the featurization of nodes and edges of a 2D D-MPNN. 
Axelrod et al. [23], on the other hand, utilized a 3D graph 
with node and edge featurization. Powerful graph neural 
network interatomic potentials use invariant geometric 
information, such as radial distances or angles, to learn 
representations [24–29]. Individual studies have reported 
that 3D MPNNs outperform their 2D counterparts on 
quantum chemical data and in virtual screening tasks 
[23, 30]. However, it remains unclear whether using 
geometric information in D-MPNNs is a prerequisite 
to achieving the desired accuracy for compounds and 
physicochemical properties that are relevant in an 
industrial setting.

This study introduces a novel tool designed for rapid 
prediction of physicochemical properties crucial to a 
wide array of industrial applications. By constructing 
four new quantum chemical databases comprising 
over 124,000 molecules relevant to the chemical and 
pharmaceutical sectors, we ensure applicability across 
diverse chemical systems. Additionally, we compile 
26,000 experimental data points from public databases, 
covering six key physicochemical properties. Our model, 
built on the D-MPNN architecture, is capable of handling 
both 2D and 3D graph representations. We investigate 
whether incorporating 3D chemical information 
enhances prediction accuracy significantly. To achieve 
chemical accuracy across all properties, we employ Δ-ML 
for thermochemical properties and transfer learning for 
liquid-phase thermodynamic properties. Extrapolative 
tests using various data splits and analysis of learning 
curves are conducted to assess model robustness. Open-
source access to the source code, datasets, and optimized 
models is provided on https://​github.​com/​mrodo​bbe/​
chemp​erium/ for transparency and reproducibility.

Results and discussion
Chemical datasets
Existing large training and pretraining datasets uti-
lized for physicochemical property prediction serve 
as benchmarks for algorithm evaluation but lack spe-
cific alignment with industrial demands. The molecules 
targeted for reliable prediction tools vary significantly 
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depending on industry sectors (e.g., base chemicals, 
pharmaceuticals) and applications (e.g., kinetic mod-
eling, solvent selection). To address this diversity of 
needs, we have taken into account several criteria in 
the creation of quantum chemical databases, includ-
ing molecule size, presence of heteroatoms, and the 
constituent elements of the molecule. A descriptive 
evaluation of the composition of the four databases 
ThermoG3, ThermoCBS, ReagLib20, and DrugLib36 is 
provided in Fig. 1.

ThermoG3 is a database with quantum chemical 
properties of 53,550 structures, including radicals, 
calculated at the B3LYP/6-31G* and the G3MP2B3 
levels. ThermoCBS is similar to ThermoG3 but contains 
52,837 compounds with properties calculated at the 
CBS-QB3 level. Compared to the principal quantum 
chemical benchmark, QM9 [31], ThermoG3 and 
ThermoCBS have a greater diversity of chemical species, 
including radical species, different conformers for 
several compounds, and molecules with up to 23 heavy 
atoms (Fig.  1a and e). These species are representative 
of detailed kinetic modeling tasks involving renewable 
feedstocks. In contrast, QM9 comprises molecules up 
to nine heavy atoms, and 98% of its molecules belong to 
four classes (HCON, HCO, HCN, and HC), while only 
63% of ThermoG3’s and 52% of ThermoCBS’s molecules 
belong to these classes (Fig.  1f ). As shown in Fig.  1e, 
only 3,898 compounds from ThermoG3 and ThermoCBS 
are found in QM9, making it unique benchmarks for 
thermochemical property prediction.

ReagLib20 and DrugLib36 are two quantum chemical 
solvation datasets containing 48 physicochemical 
properties, constructed using COSMO-RS [32, 33] as 
pretraining sets in the transfer learning tasks. ReagLib20 
contains 45,478 organic molecules of biological and 
industrial relevance, selected from internal databases, 
and DrugLib36 counts 40,080 organic molecules selected 
from Enamine’s DDS-50 [34]. It is illustrated in Fig.  1a 
and b that the databases are complementary in terms 
of molecular size. ReagLib20 is focused on smaller 
molecules than DrugLib36, with a much greater diversity 
in heteroatoms (Fig. 1d and f ) in terms of heteroatoms. 
Hence, ReagLib20 is considered to represent the chemical 
space of reagent-like molecules, while DrugLib36 covers 
drug-like molecules.

Experimental data points for six properties (Tb, Tc, 
Pc, Vc, logKOW, logSaq) of 17,156 chemical compounds 
are collected from various public sources [5, 22, 35]. All 
chemical compounds in the experimental database have 
at least one property listed with an experimental value. 
There is an imbalance in the distribution of compounds 
since Tb data is mainly available for compounds with up 
to 12 heavy atoms, while most experimental data points 

for logKOW and logSaq are for compounds with 12 to 36 
heavy atoms. An overview of the data statistics is given 
in Table S1.

Figure 2 shows the accuracy for six COSMO-RS-calcu-
lated properties. For each of the properties, experimental 
data is available for only a small subset of the molecules. 
Experimental data for the boiling point and the critical 
parameters does not overlap with the DrugLib36 data-
set, as larger, drug-like compounds will likely decompose 
before reaching their critical state or even boiling point. 
The calculated data is especially, but not surprisingly, 
accurate for the critical volume, and the boiling point, 
octanol–water partition coefficient, and critical tem-
perature are also in good agreement with experiments. 
The lower accuracy of logSaq is related to the accuracy 
of Abraham’s linear free energy relationship [36, 37], of 
which the descriptors are calculated from COSMO-RS 
σ-moments. Tc has the lowest accuracy against experi-
mental data, which might be explained by large experi-
mental uncertainties [38].

Geometric directed message‑passing neural networks
We used directed message-passing neural networks 
(D-MPNN) to learn the relationship between the molec-
ular structure and a physicochemical property. We based 
the architecture of the 2D D-MPNN on the methodol-
ogy described by Yang et  al. [19]. To include the third 
dimension of molecular information, two different geo-
metric D-MPNNs are created which differ from each 
other by the initial featurization of nodes and edges. We 
considered in this work geometric D-MPNNs using 3D 
graphs that differ from 2D graphs by the incorporation 
of the xyz-coordinates of the atoms. The first geometric 
D-MPNN uses the same initial atomic featurization as 
the 2D D-MPNN, which is a well-documented approach 
[23, 24, 30]. In the second model, we introduce the 
atomic radial distribution function (RDF) [39] as a novel 
atom featurization for geometric D-MPNNs. RDFs were 
chosen as an atom descriptor in accordance with the 
findings from Wojtuch et al. [40] that information about 
the atomic neighborhood boosts the predictive perfor-
mance. In both 3D models, the edges correspond to all 
atom pairs that are separated from each other by a dis-
tance shorter than a cutoff radius rC . An illustration of 
the RDF-featurized geometric D-MPNN is shown in 
Fig. 3.

We have trained the two geometric D-MPNNs with 
rC values ranging from 1.5  Å to 3.0  Å on the Ther-
moG3 dataset. The ground truth data is composed of 
the residual between the standard enthalpy of formation 
at 298  K ( �H

◦

f,298 K ) values calculated at G3MP2B3 and 
B3LYP level-of-theory. �H

◦

f,298 K is, as a physicochemi-
cal property of a molecular conformation, an appropriate 
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Fig. 1  Overview of the new quantum chemical databases ThermoG3 (yellow), ThermoCBS (blue), ReagLib20 (orange), and DrugLib36 (green). 
a Heavy atom distribution. b Relationship between logKow as function of molecular weight for liquid-phase databases. c �H

◦

f,298K
 as function 

of molecular weight for ThermoG3 and ThermoCBS. d Atom types distribution. e Overlap between the ReagLib20, ThermoG3, and QM9 database. 
DrugLib36 does not overlap with any of the datasets. f Number of molecules per type, classified by constituent elements
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property to evaluate the effect of atomic featurization of 
geometric D-MPNNs on. Since DFT-optimized molecu-
lar geometries are used as input, the �H

◦

f,298K with DFT 
quality is calculated without extra cost and can there-
fore be used as input, validating the choice for �-learn-
ing. A summary of the results is given in Fig.  4a. The 
baseline model is a 3D D-MPNN with simple atomic 
features, in which messages are sent only through edges 
corresponding to covalent bonds. This baseline model is 
outperformed by models with the same atomic featuri-
zation that use spherical message-passing. Remarkably, 
the value of the cutoff radius only affects RDF-based 
models, where large errors are found for rC smaller than 
1.9 Å. This is explained by the presence of bonds in the 
molecule with larger bond lengths, such as Si-Cl bonds 
with a length of 2.08 Å. Indeed, the combination of RDFs 
with a small cutoff radius and limited spherical message-
passing lead to disconnected parts in the molecule. In 
such case, the complete graph lacks information about 
that bond and the test set error increases exponentially 
with the number of unmodeled bonds (see Figure S1). 
This scenario is not observed with simple atomic fea-
tures, as these contain information about the atomic 
neighborhood regardless of the rC value. Even at the 
lowest evaluated rC value of 1.5 Å, which is shorter than 
most covalent bonds, the feature-based model is able to 
accurately learn a representation of the molecule. Since 
message-passing is then only performed for the shortest 
bonds (e.g., C–H, C≡C, …), the molecular representation 

will then mainly consist of learned atomic contributions, 
which appears to be sufficient when using a large train-
ing set. It is assumed that the low variance in prediction 
errors over the rC values is due to using averaged predic-
tions with ensemble learning.

An ideal rC is found around 2.1 Å and corresponds to a 
graph with mainly covalent bonds. More details about the 
uncertainties as function of the cutoff radius are provided 
in Figure S2 and S3. Increasing the cutoff radius does not 
lead to a better predictive performance but to a higher 
computational effort. Therefore, it is recommended to 
keep rC as small as reasonably possible. A similar finding 
is given in the work by Isert et al. [30]. Radii above 3.0 Å 
are not evaluated to ensure sufficient memory during 
training.

Predictive performance for thermochemistry
To probe what the impact of geometric information 
inclusion is, we compared the performance of 2D and 3D 
D-MPNNs for predicting �H

◦

f,298 K and �Hf,1000K directly 
and via �-ML. The results are summarized in Table 1 by 
means of the mean absolute error (MAE) and the root-
mean-squared error (RMSE) on a random split test set. 
There is a difference between the order of magnitude of 
the errors in the direct prediction models and in the �
-ML models. This discrepancy can be attributed to the 
output range, which spans over 3,000  kJ/mol for the 
direct predictions and around 300 kJ/mol for the residual 
prediction. None of the tested D-MPNNs is capable of 

Fig. 2  Parity plots showing the agreement between experimental and COSMO-RS calculated data for six properties. The bar plots show 
the difference between calculated and experimental data
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reaching “chemical accuracy” in the direct prediction test. 
Hereby, it is tacitly assumed that the 2D model predicts 
the value of the lowest-energy conformer. Despite being 
incapable of distinguishing various conformations, which 
are present in ThermoG3 and ThermoCBS for thousands 
of molecules, the 2D models reach a comparable 
performance with the best 3D models. Additionally, 
where previous work failed to accurately account for 
radical species using 2D D-MPNNs [41], the 2D model 
in this work is able to do so since hydrogens are explicitly 
added to the graph.

Indeed, with a 2D model, an RMSE as low as 1.84 kJ/
mol is reached on the ThermoCBS dataset. However, 
the use of �-ML requires a DFT calculation per se so 
that the optimized molecular geometry is given without 

a cost. Since a 2D model is not able to distinguish 
between various conformations of the same compound, 
it is not possible to use it for tasks such as conformer 
search when a workflow is created with a conformer 
ensemble generation software [42–44]. In that case, a 2D 
D-MPNN will predict the same output value for every 
conformation, while the 3D D-MPNN can differentiate. 
Moreover, conformer ordering is dependent on the 
accuracy of the computational method and lower-level-
of-theory optimized conformers do not guarantee that 
the high-level-of-theory minimum energy conformer is 
found [17]. The necessity for predictions with high-level-
of-theory accuracy motivates the use of geometric �-ML 
for thermochemistry tasks.

Fig. 3  Working principle of the geometric D-MPNN. a Initial atomic featurization by atomic RDFs with maximal radius rC . b Directional edges 
are updated for T  steps using messages from incoming edges within a sphere with radius rC . c Atomic representations are created by averaging 
the incoming edges from covalently bonded atoms. The molecular representation is made by averaging the atomic representations. d 
A feedforward neural network is used for making a regression between the learned molecular representation and the physicochemical properties
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The �Hf at temperatures above 298.15  K are 
calculated using predicted heat capacity values. Only 
a slight increase in the prediction error is observed at 
1000  K as the prediction error is mainly determined 
by the error on �H

◦

f,298 K . The heat capacity values at 
45 different temperatures between 298.15 and 1500  K 
are predicted in a multitask model that also includes 
S298 . NASA polynomials are fitted from the predicted 
values. These polynomial fits allow to calculate �Hf , 
Sf , cp , and �Gf at any temperature between 298.15 
and 1500 K. Furthermore, the NASA coefficients allow 
thermochemistry prediction in CHEMKIN® input 

format, and direct integration into reaction network 
generation and reactor simulation packages [45]. A 
complete overview of the prediction accuracies for each 
model is given in Table S2 to S9.

Figure  4b depicts the tenfold ensemble performance 
of the best performing 3D D-MPNN with RDF fea-
turization and molecular feature descriptor using �
-learning, trained on ThermoCBS �H

◦

f,298 K . A system-
atic deviation is noticeable for the low-level-of-theory 
data, which is larger at the lower end of the value range 
and smaller for positive �H

◦

f,298 K values. This devia-
tion arises from approximations that are made in the 

Fig. 4  Predictive performance for thermochemistry predictions on a random split of test set molecules. a Effect of cutoff radius on the mean 
absolute error (MAE) and root-mean-squared error (RMSE) using tenfold ensemble models for ThermoG3 �H

◦

f,298 K
 predictions. 3D D-MPNNs are 

used of which the atoms are featurized with RDFs and simple atomic features. Error bars have been omitted for visual clarity and are given in Figure 
S2 and S3. b Parity plot and error distribution of B3LYP-calculated (blue) and ML-predicted (yellow) �H

◦

f,298 K
 values against CBS-QB3 calculated 

data. An optimized tenfold 3D MPNN with RDF featurization and molecular feature descriptor is used for ML predictions. c 95% confidence interval 
for ensemble when predictions with an uncertainty above a threshold are excluded. d Error distribution of all data (yellow), multi-substituted 
aromatics (orange), and polyhalogenated compounds (purple) for predictions with an RDF-featurized 3D D-MPNN
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lower-level-of-theory quantum chemistry calculations, in 
this case with B3LYP/6-31G*. Nevertheless, lower-level-
of-theory methods are sufficiently accurate to locate 
the minima on the potential energy surface. That is why 
higher-level-of-theory quantum chemistry methods (e.g. 
G3MP2B3 or CBS-QB3), which take electron correlations 
into account in more detail, use DFT-optimized molecu-
lar geometries. Therefore, the difference in energies is 
related to local structural features around the atom. The 
ML models can learn this residual with high accuracy 
and the data points coincide with the parity line. As such, 
the �-ML approach reduces the computational effort to 
obtain the thermochemistry to the time required for the 
DFT optimization of the molecular geometry. The DFT 
optimization and subsequent vibrational frequency cal-
culations of a molecule with more than 15 non-hydrogen 
atoms require a computational time in the order of 103 s 
on a workstation with 8 central processing units (CPU). 
The most time-consuming part consists of the sequence 
of single-point calculations with a high-level-of-theory 
quantum chemistry method, taking approximately 106 s, 
and is sped up to less than a second using the trained ML 
models.

Ensemble learning allows for determining uncertainty 
in the prediction by calculating the standard deviation 
over the individual model predictions. By selecting a 
threshold standard deviation, the 95% confidence inter-
vals ( u95 ) can be tightened to meet even the most strin-
gent chemical accuracy definition. A detailed overview 
for the ThermoG3 predictions is given in Fig. 4c. Select-
ing an uncertainty threshold of 2  kJ/mol, can lower the 
u95 to 3 kJ/mol, so that only 1% of the remaining values 
have a test set error above 4.184 kJ/mol. The model confi-
dence can be further increased by lowering the threshold 

value. The RDF-featurized model appears to be the most 
reliable one, as it can most effectively remove poor pre-
dictions and tighten u95.

Analogies can be drawn between MPNNs and group 
contribution methods. Essentially, an MPNN implicitly 
learns to incorporate higher-order group neighborhoods 
in the message-passing phase and, as such, outperforms 
traditional second-order group contribution methods, 
which solely use the additive character in 2D graph 
information [46]. Some compound classes that are highly 
relevant in industrial projects, such as multi-substituted 
aromatics and polyhalogenated hydrocarbons, are 
deemed problematic to estimate accurately with group 
contributions [47, 48]. The limitations of the group 
additivity are then tried to overcome by introducing non-
nearest neighbor interactions [49]. This is a futile job 
given the immense diversity of aromatic systems [50]. 
Figure 4d shows that 3D D-MPNNs exhibit a comparable 
performance for multi-substituted aromatics as for the 
complete test set. Polyhalogenated compounds, which 
are about 5% of the complete database, have a wider error 
distribution than the average molecule in the database.

Prediction of solvation and phase transition properties
Thermochemical property prediction benefits of using 
a gas-phase optimized molecular geometry because of 
the existing relationship between that structure and the 
property. For many other physical and chemical prop-
erties of a molecule, additional effects on the geometry 
must also be taken into account, which further increases 
the computation time. In this work, we have evaluated 
the predictive performance for six molecular properties 
using a gas-phase single-conformer geometry. The results 
of this evaluation are given in Fig.  5, in which 2D and 

Table 1  Performance of various D-MPNN models on a random test set. Two types of learning are tested: directly predicting �H
◦

f,298K
 

and predicting the �H
◦

f,298K
 residual ( �-ML)

The optimal values per property are given in bold

Assessment made using mean absolute error (MAE), root-mean-squared error (RMSE). All models are trained as a tenfold ensemble

ThermoG3 ThermoCBS

D-MPNN configuration �H
◦

f,298K

[kJ mol−1]

�Hf,1000K

[kJ mol−1]
�H

◦

f,298K

[kJ mol−1]

�Hf,1000K

[kJ mol−1]

Model Atom descriptor Method MAE RMSE MAE RMSE MAE RMSE MAE RMSE

2D Features Direct 8.66 14.24 8.91 14.51 6.94 13.63 7.20 13.90

3D Features Direct 8.08 11.68 8.21 11.87 7.83 13.78 8.03 14.07

3D RDF Direct 7.09 20.44 7.25 20.36 7.67 16.96 7.81 17.18

2D Features Δ-ML 1.42 3.00 1.71 3.29 1.26 1.84 1.71 2.44

3D Features Δ-ML 1.36 2.93 1.67 3.27 1.20 1.78 1.62 2.36

3D RDF Δ-ML 1.23 3.44 1.62 3.65 1.06 1.73 1.46 2.34
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3D D-MPNN architectures are evaluated, as well as two 
learning strategies: direct property prediction and trans-
fer learning by pretraining on the ReagLib20 and Drug-
Lib36 databases. Pretraining is performed for Tb and the 
critical properties by training models on the respective 
properties in the ReagLib20 database, since these prop-
erties are of interest for smaller compounds. Then, these 
models are fine-tuned on the experimental dataset. The 
transfer learning procedure for logKOW and logSaq is 
analogous with the difference that the models are initially 
trained on the combination of the ReagLib20 and Drug-
Lib36 databases.

The 2D model is superior over 3D models in direct 
property prediction. This is especially the case for the 
critical properties of which the experimental data is 
scarce. However, the improvement with pretraining is 
statistically insignificant for 2D models as opposed to 
the 3D models. This might indicate that 3D models need 
larger data sets to effectively learn structure–property 
relationships.

Generalizability and extrapolative performance
To understand the model’s reliability for unseen mol-
ecules, it is necessary to quantify the accuracy of extrap-
olative tests. This is done with scaffold-based test splits 
[51], where none of the molecules in the training set has 
the same Bemis-Murcko scaffold [52] as the molecules in 
the test set. Because the tested molecules are structurally 
different from the ones the model has seen, this method 

allows to assess the generalizability capacities. In Fig. 6, 
we show learning curves for the �H

◦

f,298K residual and 
logKOW using the three D-MPNN architectures that have 
been evaluated throughout this article. In Fig. 6a and c, 
the learning curves are determined for random (interpo-
lative) test sets and in Fig. 6b and d, a scaffold-based split 
is used. Common for all situations is that the RDF-based 
3D D-MPNN has a much larger error than the mod-
els that use simple atomic features. This result is in line 
with the results in Fig.  5, where the RDF-based model 
has a lower accuracy for the properties with the smallest 
training set sizes, namely the directly predicted critical 
properties.

The errors from random splitting are lower than those 
from the scaffold-based splits, which is an expected 
result. However, the rate at which the error drops for 
RDF-based models is in all cases higher than for the 
models that use simple atomic features. Both the 2D and 
3D model appear to learn at a similar rate, whereas the 
RDF-based model takes better advantage of increased 
training set sizes. In the logKOW results, the 2D D-MPNN 
outperforms the 3D D-MPNNs in the entire domain. This 
is in line with the results in Fig. 5, where the 2D model 
outperformed the 3D models in the direct prediction of 
liquid-phase properties. The logKOW data is still in the 
limited data range, since the learning curves follow a 
continuous linear trend. This indicates that adding more 
data will further improve the model performance. Both 
in random and scaffold splits, an error below 0.7 log units 

Fig. 5  RMSE for various D-MPNNs with and without transfer learning tested on experimental Tb (a), logKOW (b), logSaq (c), Tc (d), Pc (e), and Vc data (f)
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is obtained for logKOW models trained on only 1,000 data 
points, which corresponds to the “chemical accuracy” in 
theoretical chemistry [11].

The benefit of performing DFT optimization of 
molecular geometries prior to predicting liquid-phase 
and critical properties was found to be negligible 
with the tested D-MPNN models. The utilization of a 
single gas-phase conformation might even induce an 
undesired bias since these properties are less sensitive 
to conformational differences. On the other hand, 
gas-phase thermochemistry, and in particular energy, 
strongly depends on the 3D arrangement of atoms. 
Especially in cases where larger amounts of data 
are available, an RDF-featurized 3D D-MPNN with 

ensemble uncertainty increases accuracy and reliability 
of the predictions. Therefore, the main advantage of 
geometric models is found in building a sequence 
of molecular geometry optimization and �-ML to 
significantly accelerate gas-phase thermochemistry 
calculations while maintaining the accuracy of 
expensive single-point calculations.

Conclusions
In this work, we have focused on the importance of 
geometric information in directed message-passing 
neural networks (D-MPNN), and their potential to 
reach “chemically accurate” property predictions 

Fig. 6  Learning curves for models trained on the CBS-QB3-B3LYP �Hf,298 K correction (a, b) and experimental logKOW data (c, d). The plots show 
the test set mean absolute error (MAE) against the training set size for random and scaffold-based splits. In plots a and b, the value for RDF-based 
models trained on 500 data points is omitted for visual reasons
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for molecules of industrial interest. To this extent, 
diverse quantum chemical datasets with more 
than 124,000 molecules, relevant to chemical and 
pharmaceutical processes, were developed for training 
or pretraining machine learning (ML) models. We 
have found that D-MPNNs are capable of meeting 
the strictest definition of “chemical accuracy” for 
�H

◦

f,298K predictions by setting up threshold values 
for the prediction uncertainty. It was shown that only 
a slight drop in accuracy is witnessed in temperature-
dependent thermochemistry predictions up to 
1500 K. There are two main arguments for optimizing 
molecular geometries with DFT before performing 
ML predictions. Firstly, this enables the use of �-ML, 
in which a correction is learned for a low level-of-
theory value, and is crucial for obtaining the desired 
accuracy. Secondly, 2D models cannot be used for 
conformational search because of their invariance. 
The use of a novel radial distribution function (RDF) 
based atomic featurization outperforms the other 
models on uncertainty quantification and learning 
rate tests, hence, increasing the predictive reliability 
in extrapolative tests. However, the benefits of using 
molecular geometries were not observed for the 
prediction of liquid-phase and critical properties. 
In fact, 2D models obtained similar or even better 
performance compared to 3D models on both inter- 
and extrapolative testing. One reason might be that 
a gas-phase geometry insufficiently relates to the 
desired properties, while the low number of available 
highly accurate data points might be another reason. 
In conclusion, we believe that D-MPNNs are ready 
for use in industrial chemical engineering applications 
if (1) the model architecture is carefully chosen 
depending on the application and available data, and 
(2) the reliability of the predictions is assessed by 
setting suitable uncertainty thresholds. The property 
prediction algorithm developed and used in this work 
is freely accessible at https://​github.​com/​mrodo​bbe/​
chemp​erium/.

Methods
Quantum chemical calculations
The enthalpy of formation of molecules in the Ther-
moG3 database is computed with the G3MP2B3 
method, which is a composite method based on G3 
theory [53, 54]. The computation sequence starts 
with geometry optimizations at the B3LYP/6-31G* 
level. Then, vibrational frequency computations and 
a sequence of increasing accuracy single-point energy 
computations are performed. The enthalpy of formation 

is calculated from the primary data based on atomiza-
tion energies.

The liquid-phase properties of molecules in the 
ReagLib20 and DrugLib36 databases are calculated 
using the commercial software COSMOtherm, which 
calculates data based on the COSMO-RS theory 
[33]. TurboMole [55] was used to perform geometry 
optimizations and single-point calculations at BP/
TZVP level, followed by COSMO-RS/COSMOtherm 
calculations for solvent effects. Partition coefficients 
were calculated using the Abraham QSPR module in 
COSMOtherm [37].

NASA polynomials
Thermochemical properties at higher temperatures 
are calculated using the empirical equations developed 
by Gordon and McBride [56]. The equations contain 
dimensionless coefficients ( a1 to a7 ) which can be derived 
from fitting the heat capacity ( cp ) at various temperatures. 
Equation (1) is the empirical NASA polynomial for cp.

The temperature-dependent enthalpy of formation 
( �Hf ) is obtained via Eq.  (2), so that the NASA 
polynomial for �Hf is obtained in Eq. (3).

The temperature-dependent entropy of formation ( Sf  ) 
is calculated via Eq. (4).

Geometric message‑passing neural networks
This section describes the proposed geometric MPNN 
framework, which contains four parts: the initial 
featurization of a 3D molecular graph, the spherical 
message-passing phase, the readout phase, and a 
feedforward neural network. The architecture is depicted 
in Fig. 3.

(1)cp(T ) = R
(

a1 + a2T + a3T
2 + a4T

3 + a5T
4
)

(2)�Hf (T ) = �H
◦

f ,298.15K +

T
∫

298.15K

cp(T )dT

(3)
�Hf (T ) = R

(

a1T +
a2

2
T 2 +

a3

3
T 3 +

a4

4
T 4 +

a5

5
T 5 + a6

)

(4)
Sf (T ) = R

(

a1lnT + a2T +
a3

2
T 2 +

a4

3
T 3 +

a5

4
T 4 + a7

)

https://github.com/mrodobbe/chemperium/
https://github.com/mrodobbe/chemperium/
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Initial featurization
A molecule with n atoms is treated as a 3D molecular 
graphG = (V ,E,P) . V = {vi}i=1:n is the set of node 
(atom) features with vi ∈ R

dv the feature vector for atomi . 
E =

{

eij

}

j=1:n,k=1:n,k∈N (j)
 is the set of edge (bond) fea-

tures with eij ∈ R
de the feature vector for the bond 

between atom i and atom j , where N (i) denotes the 
nearest neighboring atoms of atom j . It holds thateij = eji . 
P = {ri}i=1:n is the set of three-dimensional coordinates 
with ri ∈ R

3 denoting the x, y, and z-coordinate of atomi . 
We compare two different initial atom embeddingsvi : the 
atomic features as implemented in Chemprop [57] and 
an atomic radial distribution function. The atomic 
features consist of the atomic number, the aromaticity (0 
or 1), and three one-hot vectors that denote the degree of 
the atom, the hybridization, and the chirality. The atomic 
radial distribution function gi(r) for atom i is a 
convolution of the intramolecular distances around 
atomi , and is given in Eq. (5).

The radial distribution function is defined by the 
following parameters: b and c are respectively the decay 
position and width, mi is the atomic mass of atomi , B is 
the smoothing parameter, dik is the interatomic distance 
between atoms i andk . The values of the parameters are 
taken from the work of Plehiers et al. [17]. The distance 
r runs from 0.8  Å torC , which is a cutoff distance. The 
length of the atomic radial distribution function is taken 
as 100. In this directed MPNN, the directed edge e′ij 
represents an interatomic distance between two atoms 
i and j , which are not necessarily chemically bonded. A 
directed edge e′ij is constructed ifdij < rC , and is defined 
in Eq.  (6) as the concatenation of the atomic feature 
vector vi and the edge feature vectoreij . In case atoms i 
and j are not chemically bonded, then eij is a vector of 
dimension de consisting of all zeros. This approach can 
be considered to be a variant on spherical MPNNs, 
since edges are constructed for all j ∈ U(i) , with U(i) the 
spherical environment (dt: Umgebung) of atom i with 
radiusrC.

Before starting the message-passing step, the directed 
edge hidden states are initialized as given by Eq. (7).

(5)
gi(r) =

[

1−
1

1+ exp(−c(r − b))

]

∑

k

(mimk)
0.5exp

[

−B(r − dik)2
]

(6)e
′
ij = cat([vi, eij])

(7)h0ij = τ (W0·e
′
ij)

Here, τ is the rectified linear unit (ReLU) activation 
function and W0 ∈ R

dv+de×dh is a learned weight matrix 
with dh the size of the edge hidden state.

Directional message‑passing
The message-passing phase is the first part of the MPNN 
and operates for T  iterations on the directed 3D molecu-
lar graph. In the message-passing phase, information is 
transmitted through the molecule using message func-
tions. The MPNN updates in iteration t the edge’s hidden 
states htij and messages mt

ij using message function Mt 
and update function Ut . The updated hidden state ht+1

ij  
and message mt+1

ij  are defined in Eqs. (8) and (9). ni is the 
number of atoms in the spherical atomic environment of 
atom i . Wm ∈ R

dh×dh is a learned weight matrix.

Readout phase
In the readout phase, a molecular representation is cre-
ated from the edge hidden states. First, an atomic mes-
sage mi is created by averaging the incoming hidden 
edges at iteration T  [Eq. (10)]. The atomic representation 
hi is calculated by concatenating the atomic feature vec-
tor vi and the atomic message mi , multiplying this new 
vector with a weight matrix Wh ∈ R

dh×do and sending it 
through a ReLU activation function τ [Eq. (11)].

A molecular representation h is obtained by averaging 
the atomic representations, as shown in Eq. (12). Generic 
MPNNs aggregate by summing edge hidden states and 
atomic representations, but in agreement to the findings of 
Isert et al. [30] an averaging operation is used to prevent 
exploding gradients. The learned molecular representation 
h is used as input for a feedforward neural network.

(8)

mt+1
ij =

1

ni − 1

∑

k∈U(i)\j

Mt

(

htki, dik
)

=
1

ni − 1

∑

k∈U(i)\j

htki
dik

(9)ht+1
ij = Ut

(

htij ,m
t+1
ij

)

= τ

(

htij +Wmm
t+1
ij

)

(10)mi =
1

ni

∑

k∈U(i)

hTki

(11)hi = τ (Whcat([vi,mi]))

(12)h =
1

nG

∑

i∈G

hi
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Hyperparameter optimization and training details
The model is written using the Python deep learning 
library Keras (version 2.15) [58], as implemented in Ten-
sorFlow (version 2.15) [59]. The training is performed on 
NVIDIA V100 GPUs. Hyperparameters were optimized 
using the Hyperband optimizer [60] in Keras-Tuner and a 
fixed set of hyperparameters is chosen that performs well 
for the various model configurations and datasets. The 
size of the edge hidden states dh is 512 and the size of the 
molecular representation do is 256. The message-passing 
iteration depth T  equals 6. A feedforward neural network 
with 5 layers and hidden layers size 500 was used. The lay-
ers have a bias and are connected with Leaky ReLU activa-
tion functions. The weights and biases are initialized using 
the Glorot initialization scheme [61]. To avoid memory 
problems, a batch size of 16 was used. The neural network 
learning is performed with an Adam optimizer using an 
exponentially decaying learning rate schedule [62].

All model comparisons are made on a single trained 
model. The optimized performances are given based on 
the performance of a tenfold model ensemble. Ensemble 
learning is a common technique in literature to improve 
model performance by training independent models and 
averaging their predictions. The averaged predictions of 
the ten models is used as the final prediction value and 
the standard deviation on the predictions is used as an 
uncertainty estimate.
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