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Abstract 

Synthetic accessibility prediction is a task to estimate how easily a given molecule might be synthesizable in the labo-
ratory, playing a crucial role in computer-aided molecular design. Although synthesis planning programs can deter-
mine synthesis routes, their slow processing times make them impractical for large-scale molecule screening. On 
the other hand, existing rapid synthesis accessibility estimation methods offer speed but typically lack integration 
with actual synthesis routes and building block information. In this work, we introduce BR-SAScore, an enhanced 
version of SAScore that integrates the available building block information (B) and reaction knowledge (R) from syn-
thesis planning programs into the scoring process. In particular, we differentiate fragments inherent in building blocks 
and fragments to be derived from synthesis (reactions) when scoring synthetic accessibility. Compared to existing 
methods, our experimental findings demonstrate that BR-SAScore offers more accurate and precise identification 
of a molecule’s synthetic accessibility by the synthesis planning program with a fast calculation time. Moreover, we 
illustrate how BR-SAScore provides chemically interpretable results, aligning with the capability of the synthesis plan-
ning program embedded with the same reaction knowledge and available building blocks.

Scientific contribution
We introduce BR-SAScore, an extension of SAScore, to estimate the synthetic accessibility of molecules by leveraging 
known building-block and reactivity information. In our experiments, BR-SAScore shows superior prediction perfor-
mance on predicting molecule synthetic accessibility compared to previous methods, including SAScore and deep-
learning models, while requiring significantly less computation time. In addition, we show that BR-SAScore is able 
to precisely identify the chemical fragment contributing to the synthetic infeasibility, holding great potential for future 
molecule synthesizability optimization.

Keywords  Synthetic accessibility, Synthesis planning, Chemical reactivity, Building-block accessibility

Introduction
In recent years, there has been a surge in the develop-
ment of generative models aimed at proposing potential 
drug or functional material candidates [1–3]. However, 
despite the promising chemical or biological properties 
attributed to these generated molecules, the challenge 
lies in translating these virtual designs into real synthesis, 
posing a significant bottleneck [4, 5]. Although the emer-
gence of synthesizability-ensured molecule design has 
posed a promising solution to design more synthesizable 
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molecules, most of the other existing inverse design algo-
rithms still suffer from this synthesizability issue [6–9]. 
Fortunately, with the advancement of computer-aided 
synthesis planning (CASP) algorithms [10, 11], scien-
tists now can access the synthesis pathways of virtu-
ally designed molecules without the need for manual 
retrosynthesis analysis, thus expediting the screening 
process. To further streamline this process, several algo-
rithms have emerged to predict the synthetic accessibil-
ity of organic molecules directly from their structural 
features, bypassing the need for running time-consum-
ing synthesis planning programs [12–14]. For instance, 
Thakkar et  al. [13] proposed a machine learning (ML)-
based scoring function called RAScore to rapidly esti-
mate whether the synthesis route of a given molecule can 
be successfully planned by the synthesis planning pro-
gram AizynthFinder [15] or not. The time of running a 
synthesis planning program for 200,000 molecules sam-
pled from the ChEMBL databse  [16] was significantly 
reduced from 239  days to 79  min by a using RAScore. 
Wang et al. [14] proposed a language-based ML model to 
predict whether the synthesis route of a given molecule 
can be found by Retro* [17], another synthesis planning 
program. Extra filter such as generic cyclic feature score 
(GCF) [18] was found useful for filtering out exotic asso-
ciations that are unlikely to be synthesized or appear in 
the real chemical space.

Despite these advancements, the ML-based methods 
trained by the molecules labeled by synthesis planning 
program cannot capture the full picture of the synthesis 
planning capability of the targeted program, since the 
labeled examples are unlikely to cover all the learned 
reactions and building blocks available in the program. 
Moreorver, the computation time of applying ML-based 
models is often much longer than the rule-based meth-
ods. For example, as shown in the results section, the 
computation time of RAScore [13] is more than 300 
times of that of SAScore [19]. Therefore, designing a 
much faster scoring function that can sufficiently fully 
capture the capability of synthesis planning program is 
needed for practical synthesis accessibility estimation.

In this paper, we introduce Building block and Reac-
tion-aware SAScore (BR-SAScore), a novel approach that 
rapidly estimates the synthetic accessibility of a molecule 
enhanced by the knowledge of available building blocks 
(B) and reaction (R) based on the rule-based method 
SAScore [19]. Unlike previous ML-based models, which 
learns from the examples labeled by synthesis planning 
program, BR-SAScore analyzes molecule fragments to 
directly represent building block and reaction knowledge 
of the synthesis planning program of interest. Specifi-
cally, we decouple fragmentScore in SAScore into build-
ing-block fragment score (BScore) and reaction-driven 

fragment score (RScore) to explicitly consider synthesis 
knowledge and building blocks accessibility from the 
reaction dataset and building blocks, respectively. Our 
proposed RB-SAScore demonstrates superior accu-
racy and precision in synthetic accessibility estimation, 
coupled with fast calculation speeds. Additionally, its 
chemically intuitive design facilitates intuitive interpret-
ability, shedding light on the specific molecular features 
contributing to synthesis infeasibility. We anticipate 
that the development of RB-SAScore will significantly 
enhance the synthetic accessibility estimation for virtu-
ally designed molecules.

Materials and methods
Dataset
To demonstrate the practical performance of BR-SAS-
core across various domains, we selected three distinct 
test sets previously utilized for evaluating other meth-
ods. The first test set (TS1) was compiled by Voršilák 
et al. [20], comprising 3,581 molecules sampled from the 
ZINC-15 database [21] and an equal number from the 
GDB-17 database [22]. The second test set (TS2), col-
lected by Thakkar et  al. [13], consisted of 30,348 mol-
ecules sampled from ChEMBL [16], GDBChEMBL [23], 
and GDBMedChem [24]. Lastly, the third test set (TS3), 
gathered by Yu et  al. [25], comprised 1,800 structural 
complex molecules sourced from previous works of syn-
thetic accessibility and molecular complexity analysis [19, 
20, 26–30].

The labeling of molecules as either easy-to-synthesize 
(ES) or hard-to-synthesize (HS) differs across these test 
sets. In TS1, labels are defined based on the source data-
base (ZINC-15 labeled as ES, GDB-17 as HS). Conversely, 
in TS2 and TS3, labels are determined by whether the 
synthesis route of the target molecules can be resolved by 
synthesis planning program Retro* [17]. To ensure label 
consistency, we standardized the datasets by sampling 
an equal number of molecules (900 ES and 900 HS) from 
each test set and relabeling them by employing Retro* 
for all 5400 molecules to ascertain their synthesis routes. 
Following established methodologies, a molecule is 
labeled as ES if its synthesis route can be identified within 
10 reaction steps using Retro*, otherwise it is labeled 
HS. The statistical details of the relabeled datasets are 
presented in Table 1, and the hyperparameters of imple-
menting Retro* in this paper can be found in Table S1.

SAScore: a brief review
Our method, RB-SAScore, is based on the SAScore [19], 
a widely accepted and well-performing synthetic acces-
sibility metric [5, 31]. SAScore integrates both local and 
global structural molecular features, with local structure 
represented by molecule fragments (fragmentScore) and 
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global structure represented by structure complexity 
(complexityPenalty):

The fragment score is derived from the popular-
ity of each molecular fragment, encoded as Extended-
Connectivity Fingerprints [32] (ECFPs), among a set of 
previously synthesized molecules. The rationale is that 
fragments appearing more frequently across diverse mol-
ecules are more likely to be synthesized, while rare frag-
ments receive negative scores. By fragmenting 934,046 
molecules from the PubChem databasese [28], the score 
of each fragment is computed, with common fragments 
receiving higher scores and rare ones assigned negative 
scores. These fragment scores are then averaged to repre-
sent the overall local feature of a given molecule.

On the other hand, global features such as the number 
of atoms and stereocenters in the molecule are captured 
by the complexity penalty term. Specifically, the complex-
ity penalty comprises four commonly considered features 
in synthesis accessibility: size complexity (number of 
atoms), stereo complexity (number of stereocenters), ring 
complexity (number of bridgehead and spiro atoms), and 
macrocycle complexity (number of rings with size > 8). 
Mathematically, they are calculated as follows:

where

(1)SAScore = fragmentScore − complexityPenalty

(2)fragmentScore =

∑n
k=i Scorei

n

(3)

complexityPenalty = SizeComplexity+ StereoComplexity

+ RingComplexity+MacrocycleComplexity

(4)SizeComplexity = nAtoms
1.005

− nAtoms

(5)StereoComplexity = log(nChiralCenter + 1)

Finally, the calculated score from Eq. 1 is multiplied by 
-1 and scaled between 1 and 10, where molecules with 
higher SAScore are predicted to be more difficult to syn-
thesize, while those with lower SAScore are predicted to 
be easier to synthesize.

The distribution of structural complexity for the ES 
and HS molecules in the three test sets is depicted in 
Figure S1. Overall, the size penalty and stereo penalty 
of molecules in TS3 are higher than those in TS1 and 
TS2, indicating more complex molecular structures in 
TS3 compared to TS1 and TS2. Additionally, the pen-
alty difference between ES molecules and HS molecules 
increases progressively from TS1 to TS3.

Building‑block reaction‑driven and fragments
While the original SAScore offers valuable intuition and 
applicability across a wide range of molecules, it lacks 
consideration for individual chemical knowledge and 
building block accessibility. Simply because a molecule 
has been previously synthesized and cataloged in the 
PubChem database may not guarantee its synthesizabil-
ity since the actual reaction routes are not considered. 
Moreover, SAScore may exhibit over-pessimism towards 
synthesizability for molecules containing chemical frag-
ments commonly found in building blocks but absent in 
the PubChem database, potentially due to biased mol-
ecule sampling.

To bridge this gap between SAScore and these addi-
tional considerations (reactions and building blocks), we 
propose substituting the fragmentScore in Eq. 1 with BR-
fragmentScore, which encompasses fragments explicitly 
representing the learned reaction and available building 
blocks embedded in the synthesis planning program:

Intuitively, a molecule’s fragments can be categorized 
into two types: those inherent in the building blocks 
(building block fragments, or BFrags) and those formed 
after chemical reactions (reaction-driven fragments, or 
RFrags). For instance, consider Aspirin synthesis, where 
the ester group originates from the reaction and the 
remaining fragments from the building blocks (Fig.  1a). 
By deriving BFrags from building blocks and RFrags from 
reaction datasets, we assemble a set of fragments appli-
cable for molecule construction. We assume that if all 

(6)
RingComplexity = log

(

nBridgehead + 1
)

+ log
(

nSpiroAtoms + 1
)

(7)MacrocycleComplexity = log(nMacroCycle + 1)

(8)
BR− SAScore = BR− fragmentScore

− complexityPenalty

Table 1  The statistics of 3 test sets labeled by Retro* in this 
paper

Test set Source of molecules # ES molecules # HS molecules

TS1 ZINC-15 [21] and GDB-17 
[22]

745 1055

TS2 ChEMBL [16], GDBChEMBL 
[23], and GDBMedChem 
[24]

858 942

TS3 Various sources [19, 20, 
26–30]

810 990
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fragments in a given molecule match the popular frag-
ments in the derived set, either BFrags or RFrags, the 
molecule is likely to be synthetically accessible.

To calculate BR-fragmentScore, we derive BScore 
and RScore from BFrags and RFrags akin to the deriva-
tion of fragmentScore from chemical fragments in SAS-
core with a few modifications. For BScore, we extract 
the Extended-Connectivity Fingerprints [32] with radius 
equals 2 (ECFP4) of each atom in accessible building 
blocks, and the popularity of fragments within the entire 
building block set is calculated (Fig. 1b). Recognizing that 
chemical fragments in larger building blocks are less ver-
satile for synthesis, we normalize fragment counts by the 
total number of fragments extracted from the molecule. 
For RScore, we capture reaction centers using a reaction 
template extraction algorithm based on atom-to-atom 
mapping [33–35]. By extracting the ECFP4 of atoms in 
the reaction center and the neighboring atoms in the 
reaction product, RFrags are extracted for all recorded 
reactions (Fig.  1c). Additionally, we extract fragments 
from atoms two-hop away from the reaction center to 
enhance the description of the reaction environment. 
Because distant fragments would have less impact on the 
reaction, we weigh the fragment counts by 2−d , where 
d is the shortest distance from the atom to the reac-
tion center. To prevent the biases caused by frequently 
appeared small fragments, we exclude the chemical frag-
ments with radius equal 0 and 1 in ECFP4.

Next, we transform the counts of each BFrag and 
RFrag collected from the reaction dataset and building 
blocks into BScore and RScore by applying the logarith-
mic function after dividing the count of the fragment by 

0.1% of the total number of fragments derived from the 
dataset ( NB for building blocks, NR for reaction dataset), 
as shown in Eq.  9 and 10. To reduce the bias from the 
extremely rare fragments, fragment counts no more than 
1 are excluded. Subsequently, the RScores and BScores 
are scaled between − 3 and 3.

If a fragment i is found in the recorded BFrags and 
RFrags, the fragment’s score is determined by the higher 
score value; if the fragment i is not found in the recorded 
BFrags or RFrags, the score of the fragment is set to − 6.

For a given molecule, BR-fragmentScore is calcu-
lated by averaging the non-positive terms of Scorei after 
enumerating all n fragments extracted from the given 
molecule.

Finally, the BR-SAScore is calculated using Eq. 8 along 
with the complexityPenalty term defined in SAScore, and 
the score is scaled between 1 and 10 following the scale 
of the original SAScore:

(9)BScorei = log

(

counti

0.001NB

)

(10)RScorei = log

(

counti

0.001NR

)

(11)Scorei = max(BScorei,RScorei)

(12)
BR− fragmentScore =

∑n
k=i Scorei

n
if Scorei < 0

Fig. 1  The workflow of calculating the BR-fragmentScore. a The fragments of a given molecule can be decomposed to the fragments 
from buildings block (blue) and reaction (orange) knowledge. b The buildings block knowledge is represented by the fragments existing 
in the known building blocks, denoted as BFrags. b The reaction knowledge is represented by the fragments participating in the known reactions, 
denoted as RFrags
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The best BR-SAScore is 1 if there is no any rare frag-
ment or complex fragment in the molecule, and the worst 
BR-SAScore is 10 if all the fragments in the molecule do 
not appear in the reaction database or building blocks 
( Scorei = −6 ) and the molecule has high structural com-
plexity. Thus, the BR-SAScore is normalized by the maxi-
mum value 0 and minimum value −6− PenaltyBuffer , 
where PenaltyBuffer is the additional buffer for differen-
tiating molecules with rare fragments having different 
structural complexity. The default value of PenaltyBuffer 
is set to 1 in this paper. Examples of calculating the BR-
SAScore for Aspirin and an AI-proposed molecular 
structure showed in Gao et al. [5] are provided in Fig. 2.

In this study, our focus lies on the Retro* synthesis pro-
gram [17], a synthesis planning algorithm that leverages 
approximately 1 million reactions from the USPTO reac-
tion dataset [36] and 231 million commercially available 
building blocks cataloged in eMolecules (https://​downl​
oads.​emole​cules.​com/​free). From these datasets, we cal-
culated scores for a total of 331,332 fragments to estimate 
the BR-fragmentScore. It’s worth noting that our method 
can be readily customized to other synthesis planning 
program by accessing their reaction datasets and building 
blocks. The top-10 BFrags and RFrags with highest scores 
can be found in Figure S2.

(13)

BR− SAScorenormalized

= 10− 9(
BR− SAScore− (−6− PenaltyBuffer)

0− (−6− PenaltyBuffer)
)

Results and discussion
Main results
In this article, we conduct a comparative analysis of 
BR-SAScore with 6 existing methods, including the 
likeness-based (SAScore [19] and CLScore [37]) and 
learning-based methods (SYBA [20], RAScore [13], 
GASA [25], and DeepSA [14]) ones. Likeness-based 
methods asseess the synthetic accessibility by estimating 
the likeness of the given molecules with moelcules col-
lected from the known databases, while learning-based 
methods typically train a machine learning model to dis-
tinguished positive (HS) and negative (HS) molecules. 
SAScore and CLScore estimate the likeness between 
the given molecule and the molecules in the databases 
(PubChem and ChEMBL databases, respectively). SYBA 
learns synthetic accessibility via Bayesian optimization, 
while RAScore, GASA, and DeepSA employ artificial 
neural networks, including forward neural networks, 
graph attention neural networks, and fine-tuning of pre-
trained language models, respectively.

To evaluate the performance of each method, we pre-
sent the precision-recall curves and ROC curves of BR-
SAScore, tested on three test sets (each comprising 
1,800 molecules), compared with 6 existing methods in 
Fig.  3. Overall, BR-SAScore demonstrates higher preci-
sion and true positive rates at nearly all recall and false 
positive rate values. Specifically, BR-SAScore shows simi-
lar curves to SAScore on TS1 and TS2 but exhibits sig-
nificantly higher precision (~ 0.1) at high recall and lower 
false positive rate (~ 0.15) at high true positive rates on 
TS3. These results clearly demonstrate the advantage of 

Fig. 2  The examples of calculating the BR-SAScore for (a) Aspirin and (b) an AI-proposed structure shown in Gao et al.[5]. While Aspirin has low 
BR-SAScore (easy-to-synthesize), the AI-proposed structure has high BR-SAScore (hard-to-synthesize) due to the rare fragments in the molecule. The 
chemical fragments in the examples with non-zero BR-fragmentScore are highlighed in orange

https://downloads.emolecules.com/free
https://downloads.emolecules.com/free
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incorporating building block and reaction knowledge in 
BR-SAScore, which enhances the capability of differen-
tiating the synthetic accessibility of complex molecules. 
Among the other two likeness-based methods, SAScore 
outperforms CLScore in both precision-recall and ROC 
curves across all three test sets. When comparing the 
learning-based methods, SYBA performs best on TS1, 
whereas DeepSA performs best on TS2 and TS3.

The area under the curves (AUCs) for each method 
across the three test sets shown in Fig. 3 are calculated in 
Table 2. Considering the practical applicability for large-
scale prediction, we include the computational speed (on 
CPU) in the same table for comparison. Consistent with 
the conclusions drawn from Fig.  3, BR-SAScore exhib-
its the best PR-AUC and ROC-AUC across all test sets, 
while SAScore and DeepSA show the second-best per-
formance on different test sets and metrics. Although 

the speed of BR-SAScore is slightly slower (by 7.7%) than 
SAScore, it is significantly faster (over 40 times) than the 
encoder of DeepSA. Considering both prediction perfor-
mance and computational time, BR-SAScore stands out 
among the previously best methods.

The raw prediction scores of each method can be found 
in Figure S3, and the ablation study using only BFrags and 
RFrags in Eq. 11, or using different complexity buffer in 
Eq. 13 are shown in Figure S4-S6 and Table S2. The value 
of complexity buffer used in Eq.  11 changes the score 
distribution but does not change the precision-reall and 
ROC curves. While BR-SAScore performs well when 
using only BFrags or only RFrags, utilizing both features 
consistently achieves the best PR-AUC and ROC-AUC 
across all test sets.

Fig. 3  Precision-recall and ROC curves for synthetic accessibility prediction on three test sets using BR-SAScore, compared to six existing methods. 
Amplified views highlight precision in high-recall areas of the precision-recall curves and performance at low false positive rates in the ROC curves

Table 2  The results of synthesizability prediction on 3 different test set by 6 different prediction methods

The best values are highlighted in font bond and the second-best values are underlined. The prediction speed of each method following instructions provided by 
publicly available source code on GitHub
* Prediction speed of DeepSA estimated by running its encoder [38] due to the failed implementation of their provided GitHub scripts

Category Method PR-AUC​ ROC-AUC​ Speed (ms/mol)

TS1 TS2 TS3 TS1 TS2 TS3

Learning-based SYBA [20] 0.939 0.855 0.722 0.968 0.872 0.784 0.28
RAScore [13] 0.905 0.835 0.776 0.948 0.860 0.841 123

GASA [25] 0.890 0.886 0.801 0.951 0.890 0.851 307

DeepSA [14] 0.899 0.919 0.832 0.951 0.931 0.886 17.2*

Likeness-based SAScore [19] 0.988 0.942 0.833 0.980 0.929 0.818 0.39

CLScore [37] 0.927 0.912 0.776 0.960 0.921 0.808 8.97

BR-SAScore (this work) 0.990 0.947 0.900 0.984 0.942 0.900 0.42
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Prediction on complex molecules
To qualitatively analyze the predicted synthetic acces-
sibility of BR-SAScore, we performed an additional test 
and analysis on 18 complex molecules collected by Wang 
et al. [14] Since BR-SAScore is designed to reflect the syn-
thesis capability of Retro* [17], we run Retro* to plan the 
synthesis routes for each molecule to define the synthetic 
accessibility under Retro* capability. The synthesis plan-
ning results for the 18 molecules are shown in Fig.  4a, 
where the red vertical lines indicate the cutoff lines for 
successfully planned molecules by Retro* and the mol-
ecules synthesized within 10 steps as reported in the 
literature. Notably, among the 18 examined molecules, 
only five could be successfully planned by Retro* within 
10 steps due to its limited predictive capability. The full 
list of the synthesis steps predicted by Retro* and those 
reported in the literature for the 18 tested molecules is 
provided in Table S4.

Next, we present the results of BR-SAScore predictions 
on these 18 complex molecules in Fig. 4b. To better com-
pare the results of BR-SAScore with other methods and 
ensure good visibility, we only show the two best-per-
forming methods, DeepSA and SAScore, and normalize 

the scores of BR-SAScore and SAScore between 0 (ES) 
and 1 (HS) in Fig.  4b. The full prediction results by the 
six existing methods are provided in Figure S7. While the 
normalized SAScore assigns a high score (> 0.5) to 17 of 
the tested molecules, DeepSA aligns well with reported 
reaction steps from the literature but often overestimates 
the synthetic accessibility for molecules not successfully 
planned by Retro* (the 6–9th molecules). In contrast, 
except for Scorodonin (the 4th molecule), BR-SAScore 
shows a strong correlation with both literature reports 
and synthesis planning results. The comparison with 
other methods in Figure S7 reveals that RAScore and 
CLScore tend to overestimate the synthetic accessibility 
of HS molecules, while SYBA underestimates the acces-
sibility of ES molecules. GASA exhibits a similar predic-
tion trend to DeepSA.

The simplicity of R2fragmentScore in BR-SAScore 
calculation, based solely on the scores of chemical frag-
ments existing within the molecule, facilitates straight-
forward score interpretation. Negative R2fragmentScores 
highlight fragments that are infrequently observed in 
the reaction center of the reaction database or within 
molecules from accessible building blocks. Figure  4c–f 

Fig. 4  The results of synthesis accessibility estimation on 18 complex molecules collected by Wang et al. [14]. a The number of synthesis steps 
reported in the literature and planned by Retro* [17] for the sampled molecules. Molecules did not solved by Retro* are not shown in the figures. b 
The scores estimated by DeepSA, SAScore, and BR-SAScore on the tested molecules. The blue and red verticle lines in panel a and b are the cutoff 
lines of molecules being solved by Retro* and the molecules being synthesized within 10 steps reported in literatures. c–f The predicted scores 
from DeepSA, SAScore, and BR-SAScore for four of the molecules solved bt Retro*. The negatively contributing atoms (center of fragments) in each 
molecule given by BR-SAScores. Atoms highlighted with darker color contribute more negative R2fragmentScore to the BR-SAScore
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highlight the contribution of negative R2fragmentScores 
from each atom (center of chemical fragment) for four 
tested molecules successfully solved by Retro*, Gabap-
enin, Sedridine, Scorodonin, and Pinnatolide, repre-
senting varying levels of synthetic difficulty planned by 
Retro*. For instance, Gabapenin (Fig.  4c), lacking hard-
to-synthesize fragments, exhibits a low BR-SAScore at 
2.5. Conversely, the presence of difficult-to-synthesize 
C–C bonds in molecules like Sedridine (Fig. 4d) and Pin-
natolide (Fig.  4f ) contribute to medium BR-SAScore at 
5.03 and 5.21, respectively. The conjugated allene struc-
ture in Scorodonin (Fig. 4c) is recognized as challenging 
to synthesize, resulting in a high BR-SAScore at 8.06.

We further analyze the BR-SAScore of each molecule, 
highlighted by its atom contributions, during the syn-
thesis planning process of the four molecules shown 
in Fig.  4c–f, predicted by Retro*, and compared with 

DeepSA as depicted in Fig.  5. For Scorodonin (Fig.  5a), 
the BR-SAScore of the molecules in the first three ret-
rosynthesis steps is very low due to the presence of con-
jugated allene structure. Subsequently, the BR-SAScore 
experiences a notable decrease from 8.08 to 4.11 after 
the third reaction step, further drops to 3.65 and 3.46 
after the last retrosynthesis step due to the absence of 
conjugated allene structure in the molecule’s structure. 
However, the third retrosynthesis step is predicted with 
a very low retrosynthesis score (0.004), indicating an 
unclear predicted reaction mechanism. Regarding Pin-
natolide (Fig.  5b), the BR-SAScore of the molecules fol-
lowing the initial five retrosynthesis steps remains higher 
than the target molecule due to the alkane chain forma-
tion between three carbonyl groups post the retrosyn-
thetic ring-forming reaction. Notably, the BR-SAScores 
of the molecules surge below 5 following an SN2 reaction 

Fig. 5  The DeepSA score and BR-SAScore for four molecules, (a) Scorodnin, (b) Pinnatolide, (c) Sedridine, and Gabapentin, and their precursors 
in the synthesis routes predicted by Retro*. Accessible building blocks are displayed in blue boxes. The values above the arrow are the prediction 
scores of the single-step prediction model of Retro*, where the prediction scores lower than 0.1 are highlighted in red color



Page 9 of 10Chen and Jung ﻿Journal of Cheminformatics           (2024) 16:83 	

attacking the acetic acid, with a retrosynthesis score of 
0.012. For Sedridine (Fig.  5c) and Gabapentin (Fig.  5d), 
Retro* predicts the synthesis planning completion in one 
step. The retrosynthesis score for the formation of the 
asymmetric C–C bond through hydrogenation reaction 
for Sedridine synthesis (0.001) stands notably lower com-
pared to the nitrile reduction for Gabapentin synthesis 
(0.28).

Overall, the BR-SAScores of the molecules align well 
with the confidence levels of synthesis planning program. 
Specifically, the BR-SAScore tends to increase only after a 
low-score retrosynthesis prediction, indicating the same 
challenge for synthesis planning software to resolve the 
hard-to-synthesize chemical fragments. In contrast, the 
DeepSA scores for the four target molecules and most 
precursors are consistently high, surpassing 0.5. Notably, 
the only precursor showing low DeepSA score (0.34) is 
the Wittig reagent used at the third retrosynthesis step 
of Pinnatolode available in the building blocks, and the 
reason of the low DeepSA score is not interpretable. This 
discrepancy underscores the significance of distinguish-
ing fragments in building blocks and fragments derived 
from synthesis (reactions) when scoring synthetic 
accessibility.

Note that predicted synthetic accessibility from GASA 
[25] is also explainable by visualizing the predicted atten-
tion of each atom in the molecule. Therefore, we depicted 
a similar figure to Fig.  5 in Figure S8 to analyze the 
explainability of synthetic accessibility prediction using 
GASA. However, we did not find any straightforward 
correlation between the synthetic accessibility of mol-
ecules and the atoms highlighted by GASA attention. The 
scores predicted by all 7 methods are available in Figure 
S9. Both SYBA and SAScore show a positive correlation 
with the Retro* prediction in terms of score changes after 
the low-score route prediction, while the other meth-
ods do not exhibit changes after the low-score route 
prediction.

Conclusion
In this study, we introduce BR-SAScore, a building block 
and reaction-aware adaptation of SAScore, which con-
siders reaction-driven fragments and building-block-
accessible fragments relevant to the synthesis planning 
software. Our experiments demonstrated that BR-SAS-
core provides a better prediction correlation with the 
synthesis planning software compared to the original 
SAScore and other existing methods, including deep-
learning approaches, all within a short calculation time 
(~ 0.42  ms per molecule). From a chemical perspective, 
the superior performance of BR-SAScore can be attrib-
uted to its consideration of finite reaction knowledge 
and the available building blocks within the synthesis 

planning software. Since we are using the reaction data 
(USPTO) and commercially available building blocks 
(eMolecules) used in Retro* to score reaction-driven and 
building block fragments, one can view our method as 
a simplified but much faster model to mimic Retro* to 
estimate synthesizability (but without actual pathways). 
We note that our scoring method is applicable to any 
synthesis planning program, and if more advanced ret-
rosynthesis planning models are developed in the future, 
our scoring pipeline can still be used the same way as for 
Retro* but using different reaction and building block 
data.

In addition, the chemically intuitive design of BR- SAS-
core facilitates straightforward interpretation of the cal-
culated scores by highlighting the contributions from 
essential chemical fragments. By examining changes 
in BR- SAScore for precursor molecules in predicted 
synthesis routes, we illustrate how these highlighted 
chemical fragments are important in understanding the 
reasons for low synthetic accessibility from a chemical 
perspective. Given its adaptability to any reaction dataset 
and knowledge of building blocks, we anticipate that BR- 
SAScore will significantly aid in the practical estimation 
of synthetic accessibility for virtually designed chemicals 
in the future.
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