
Thomas et al. Journal of Cheminformatics           (2024) 16:77  
https://doi.org/10.1186/s13321-024-00866-5

RESEARCH Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of Cheminformatics

PromptSMILES: prompting for scaffold 
decoration and fragment linking in chemical 
language models
Morgan Thomas1*, Mazen Ahmad2, Gary Tresadern2 and Gianni de Fabritiis1,3,4* 

Abstract 

SMILES-based generative models are amongst the most robust and successful recent methods used to augment drug 
design. They are typically used for complete de novo generation, however, scaffold decoration and fragment linking 
applications are sometimes desirable which requires a different grammar, architecture, training dataset and therefore, 
re-training of a new model. In this work, we describe a simple procedure to conduct constrained molecule generation 
with a SMILES-based generative model to extend applicability to scaffold decoration and fragment linking by provid-
ing SMILES prompts, without the need for re-training. In combination with reinforcement learning, we show that pre-
trained, decoder-only models adapt to these applications quickly and can further optimize molecule generation 
towards a specified objective. We compare the performance of this approach to a variety of orthogonal approaches 
and show that performance is comparable or better. For convenience, we provide an easy-to-use python package 
to facilitate model sampling which can be found on GitHub and the Python Package Index.

Scientific contribution
This novel method extends an autoregressive chemical language model to scaffold decoration and fragment linking 
scenarios. This doesn’t require re-training, the use of a bespoke grammar, or curation of a custom dataset, as com-
monly required by other approaches.

Keywords  Chemical language models, Scaffold hopping, Scaffold decoration, Fragment linking, Reinforcement 
learning, De novo molecule generation, Artificial intelligence, Drug design

Introduction
The drug design process is a multi-stage process. Par-
ticularly in later drug design stages, it is desirable to fix 
a molecule to a known core sub-structure or “scaffold” 
and explore different decoration groups. Or alternatively, 
to fix certain periphery sub-structures or “fragments” 
and explore chemical sub-structures to combine them 
together, known as fragment linking, or scaffold hopping. 
Such chemically constrained modification has useful 
applications, for example, to tweak molecular proper-
ties of a lead series, to combine two weakly binding frag-
ments identified through fragment-based campaigns [1], 
to optimise proteolysis targeting chimeras that link two 
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warheads [2], or to quickly identify novel intellectual 
property [3].

Chemical language models (CLMs) are now a well-
established method for de novo molecule generation. 
Seminal methods evidenced their ability to learn to gen-
erate valid and novel SMILES strings when trained on 
a corpus of example SMILES [4], use transfer learning 
(a.k.a. fine-tuning) to condition generation to a particular 
chemical sub-space [4, 5], or reinforcement learning (RL) 
to condition generation in order to maximize an arbitrary 
objective according to a scoring function(s) that evaluates 
de novo chemistry [6, 7]. Since seminal works, there has 
been much research and proposed improvements, such 
as using diversity filters to penalize excessive exploita-
tion [8], use of experience replay [9] (and augmented 
variations [10, 11]), or exploration [12] and modification 
[13, 14] of RL algorithms to accelerate learning. In light 
of alternative and more complex model architectures, 
CLMs remain either 1st or 2nd most performant accord-
ing to a variety of benchmarks [15–18] and are the most 
commonly published deep learning model for de novo 
molecule generation [19]. Furthermore, they have under-
gone experimental validation evidencing their ability to 
generate bioactive molecules de novo in the context of 
drug design [20–25]. Overall CLMs are of increasing util-
ity and importance to augmenting and automating the 
drug design process.

CLMs based on SMILES notation have also been 
adapted to these practical requirements of the drug 
design process. For example, Langevin et  al. [26] pro-
posed SAMOA that enforced free or constrained sam-
pling from a CLM to conduct scaffold decoration 
or two-fragment linking i.e., allowing free sampling 
at a desired decoration or linking attachment point. 
Alternatively, Arús-Pous et  al. [27] proposed an RNN 
encoder-decoder architecture regarding the task as a 
sequence-to-sequence translation, for example, trans-
lating an input scaffold to the output predicted decora-
tions. This differs from the decoder-only CLMs discussed 
until this point and requires slicing of a molecular data-
set into scaffolds and decorating groups before training 
the encoder-decoder model. This architecture was used 
in LibINVENT [28] to generate scaffold-constrained de 
novo molecules adhering to chemical reaction rules by 
bespoke dataset slicing via handcrafted reaction rules 
and reaction filter RL objectives. Succeeding this, the 
architecture was used in LinkINVENT [29] by instead 
training the encoder-decoder model to translate a pair of 
molecular fragments to a linker effectively reversing the 
translation task. Similarly, SyntaLinker [30] uses a condi-
tional transformer model to translate fragments to fully 
linked molecules. This approach is impractical as it forces 
training many different CLMs architectures for each task.

Beyond CLMs, graph neural networks have been 
proposed specifically for the purpose of being able to 
conduct both unconstrained and scaffold constrained 
generation with MoLeR [31]. New language-based 
molecular representations [32] have also been proposed 
to offer greater flexibility in conducting constrained mol-
ecule generation. Further exemplifying the importance 
and utility of flexibly conducting constrained or uncon-
strained molecule generation with the same model for 
drug design.

In this work, we take inspiration from the work of 
SAMOA and the use of prompts to condition language 
generation as in models like GPT [33]. Prompts are 
sequences or partial sequences of a language used to 
inform future sequence generation. More specifically in 
this case, we propose to leverage the implicitly learned 
relationship between molecular sub-structures (as groups 
of SMILES tokens) by a simple unidirectional decoder-
only model when trained on a corpus of molecules. This 
can be achieved by providing a molecular sub-structure 
as a prompt at inference time to condition further mole-
cule generation (as well as, constrain the final molecule to 
contain this sub-structure). Further, the CLM can adapt 
to this task and optimize for different objectives when 
combined with RL. In the case of scaffold decoration of 
more than one attachment point, prompted generation is 
repeated for each attachment point (integrating any pre-
viously generated de novo decorations at each iteration). 
In the case of fragment linking, one fragment is chosen 
as the prompt and further fragments are inserted into the 
de novo generated sequence and evaluated by the CLM.

In contrast to previous work, we demonstrate that scaf-
fold decoration and fragment linking (or scaffold hop-
ping) can be achieved via prompts and RL with available 
decoder-only models. This avoids the need to design new 
grammars [32], implement and train encoder-decoder 
models specific to the task [28, 29], or even design 
bespoke model architectures [31]. Note that simple 
omitting of this approach results in plain de novo gen-
eration with the CLM. In comparison to the most simi-
lar approach SAMOA, we manipulate the SMILES string 
and re-introduce it to the CLM iteratively such that the 
CLM observes all of the molecular structure at each iter-
ation to inform conditional generation.

Methods
Autoregressive language-based models learn the prob-
ability of the next token in a sequence conditional upon 
previously observed tokens. Therefore, de novo string 
generation can be conducted by supplying a start token 
(e.g., “GO”) and predicting the probability over the next 
token in the vocabulary, sampling from that probability 
distribution to select the next token (e.g., “C”), and then 
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using the sampled token as the input in the subsequent 
iteration. This is repeated until a stop token (e.g., “EOS”) 
is sampled indicating the termination of generation. 
However, an initial sequence of tokens can be provided 
from a user-specified prompt upon which further gen-
eration is conditional, as is the case with large-language 
models such as GPT [33].

The SMILES grammar [34] is an interpretable string 
notation of the 2D graph traversal of a molecule (and 
can include stereochemistry). Therefore, a CLM trained 
on the SMILES grammar can conduct conditional (a.k.a. 
constrained from a chemistry perspective) generation by 
completion of a SMILES prompt, for example, a benzene 
prompt (“[GO]c1ccccc1”) could be continued into ben-
zanoic acid (“[GO]c1ccccc1C(=O)O[EOS]”). However, 
there are two obvious limitations to this from the chemis-
try perspective (1) string extension means that atoms are 
added to the last atom in the SMILES string and there-
fore the last atom must be the desired attachment point, 
and (2) string generation is unidirectional, atoms can 
only be added to one single attachment point. Conveni-
ently, a single molecule has multiple SMILES represen-
tations that can be controlled depending on the starting 
point and algorithm used for graph traversal. Therefore, 
SMILES can be generated such that the attachment point 
of interest can be re-arranged to be the last atom in the 
SMILES string. Given this simple observation, prompt-
based SMILES generation can be repeated for multiple 
attachment points. This also results in conditional gen-
eration based on previously extended attachment points. 
However, this iterative approach to prompted SMILES 
generation introduces a new limitation: token generation 
continues until a stop token has a high probability and is 
therefore sampled, i.e., the model is likely to consider the 

molecule complete after the first iteration. Therefore, we 
propose that RL will fine-tune the model to adapt to the 
new task of iterative prompt-based generation.

To demonstrate this approach, we use a recurrent neu-
ral network (RNN) architecture as the CLM in combi-
nation with the reinforcement learning (RL) strategy 
proposed by REINVENT, for comparative purposes. 
We endeavoured to follow the guidelines outlined by 
the baseline method for each experiment with regard 
to RNN architecture and training, for further detail see 
Appendix A.

Prompt‑based scaffold decoration
A scaffold S with multiple attachment points A can be 
represented in a SMILES string by adding branched 
dummy atoms (i.e., (*)), for example, a meta-substi-
tuted benzene can be represented as “c1c(*)cc(*)cc1”. 
The method of  decoration is demonstrated in Fig.  1 
and described in Algorithm  1. First, an attachment can 
be selected either in order of appearance in the string 
(canonical) or it can be randomly selected such that a 
batch of molecules contains a mixture of selected attach-
ment points (shuffle). Then, the SMILES string can be 
generated to be rooted at this index using RDKit and 
then reversed such that it is now the last atom. Alterna-
tively, several rooted randomized variations of SMILES 
representations can be generated [27], reversed, and the 
CLM likelihood of the full SMILES string calculated to 
select the variation most likely generated by the CLM 
(optimise). Note that because the SMILES string is only 
modified from the prompt onwards, it is trivial to remove 
and re-insert attachment points in the prompt for later 
iterations (as attachment points will not be modelled 
by a typical CLM). Then, the CLM samples new tokens 

Fig. 1  Schematic example of scaffold constrained decoration with PromptSMILES and a CLM. Attachment points are labelled with a number 
only for demonstrative purposes, in practice this is handled automatically by PromptSMILES. The CLM can optionally be used to optimize 
the SMILES re-arrangement in step 1 and is required for prompted de novo molecule generation in step 4
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at each timestep xt provided that a prompt token s∗t  at 
that timestep t does not exist. Once SMILES generation 
has terminated due to the sampling of a stop token any 
remaining attachment points are inserted back into the 
string. This is process is then repeated until all attach-
ment points have been sampled.

Algorithm 1  Decorating a scaffold using prompts

Prompt‑based fragment linking
Linking two fragments F together given a specified 
attachment point AF on each is a considerably easier 
problem, and is described in Algorithm  2. First, a frag-
ment is chosen either based on the order of appearance 
(canonical) or randomly selected such that a batch con-
tains a mixture of starting fragments (shuffle). Then, the 
first fragment SMILES undergoes the same procedure as 
a scaffold but given only one provided attachment point. 
The second fragment goes through the same procedure 
however, it is not reversed such that the attachment point 
is the first atom in the SMILES string. Following this, the 
CLM samples new tokens at each timestep xt provided 
there isn’t already a prompt token f ∗t  at that timestep t. 
Once SMILES generation has terminated due to the sam-
pling of a stop token, the stop token is removed and the 

second fragment is simply concatenated to the generated 
SMILES string. Similar to scaffold decoration, the input 
fragments can be represented as a list of SMILES strings 
with one branched dummy atom each, for example, 
[“C1C(*)C1”, “n1(*)ccncc1”].

Linking more than two fragments F together given a 

single specified attachment point AF requires a slightly 
different process. For each fragment after the initial 
prompt fragment, the molecule is scanned and a frag-
ment is inserted at each linker atom and the likelihood 
of the sequence being generated by the CLM is assessed. 
Such that the insertion point is selected to result in the 
highest overall sequence likelihood. Further fragments 
are inhibited from insertion at the indexes of a previous 
fragment. This approach also allows non-linear fragment 
linking i.e., A-X-C as well as A-X(-C)-B (see Figure B14 
for demonstrative examples). The algorithm for this is 
shown in Algorithm 3. One caveat to this approach is that 
during RL the model may learn to generate the desired 
fragment before insertion, therefore, we implemented a 
simple check to skip fragment insertion if it already exists 
to help limit repeated fragments if they occur.
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Algorithm 2  Linking two fragments together using prompts

Algorithm 3  Linking more than two fragments together using prompts
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Reinforcement learning
The RL algorithm used in this work is the same as in 
REINVENT [6] for comparative reasons. Specifically, 
we set σ = 120 as per the default in more recent ver-
sions of REINVENT [35, 36]. Note the implementa-
tion of this approach requires iterative sampling of 
the CLM and several forward passes of the network. 
Therefore, to ensure stable learning, RL is split into a 
collection phase without computing gradients, fol-
lowed by an update phase given a completed SMILES 
string. Furthermore, we investigate two approaches to 
the frequency of network updates, one update per final 
SMILES string completion, or one for every iteration of 
prompt-based completion (multi). In the case of scaf-
fold decoration, the completed SMILES string is used 
for the single update. For fragment linking, the initial 
fragment plus de novo linker SMILES is used for the 
single update, as using the completed SMILES would 
encourage the CLM to generate the fragments on its 
own accord. In all cases, the reward is calculated based 
on the completed SMILES.

Implementation
This approach is implemented with a python package 
named PromptSMILES. The software PromptSMILES 
simply automates the SMILES rearrangements described 
in this work given a function that conducts auto-regres-
sive CLM SMILES generation from a prompt (or with-
out) and a function that calculates the CLM likelihood of 
a SMILES string, facilitating easy integration with other 
libraries like the Transformers library in HuggingFace 
[37] or ACEGEN [38]. This was a design choice consid-
ering that different users may want to implement this 
approach with different CLM implementations, therefore 
it is packaged separately to any CLM. The experiments 
conducted here were generated using the SMILES-RNN 
repository with PromptSMILES integrated which also 
serves as an example for integration alongside the python 
code snippets in Fig. 2.

Results
To investigate the performance of PromptSMILES for 
scaffold decoration and fragment linking, we compare 
performance on experiments conducted by SAMOA, 

Fig. 2  Code example of how to use PromptSMILES de novo generation (a wrapper of CLM sampling with no effect, for universal integration 
purposes), for scaffold decoration or for fragment linking
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MoLeR, LibINVENT, and LinkINVENT based on the 
reproducibility of their experiments and reported results. 
We also demonstrate the extended ability to conduct 
fragment linking between more than two fragments.

Scaffold decoration of drug‑like scaffolds at specified 
attachment points
To investigate the baseline behaviour of our approach, 
we re-implemented the first experiment conducted by 
Langevin et  al. [26] and compared the results to their 
method SAMOA. Whereby 17 drug discovery relevant 
scaffolds were extracted from SureChEMBL [39] with 
between 1 to 5 specified attachment points per scaffold 
used for scaffold-constrained molecule generation. We 
pre-trained an RNN with the same hyperparameters and 
training dataset as provided by the authors. Note that the 
training dataset does not contain any molecules with any 
of the 17 validation set scaffolds. Once trained, 10,000 
scaffold-decorated molecules were sampled and the 
validity and uniqueness were measured as shown in Fig. 3 
with examples shown in Figure B3.

For 16/17 scaffolds, PromptSMILES generates a higher 
fraction of valid de novo SMILES, however, for only 1 in 
17 scaffolds does it generate a higher fraction of unique 
de novo SMILES. This is expected due to the limitation 
introduced by the iterative nature of prompt comple-
tion earlier described in the Methods: after decoration 
of the first attachment point the molecule is likely con-
sidered already complete for future iterations. This could 
potentially be improved by increasing sampling tempera-
ture, however, we proposed to see if the model was able 
to overcome this limitation by transfer learning to this 
new task via RL by using a simple representative objec-
tive task. The model was trained using the REINVENT 
algorithm to maximize the reward returned, whereby 
1 was provided as the reward if a molecule was valid 
and unique, and 0 if the molecule was invalid or non-
unique. The first 10,000 de novo SMILES generated are 

additionally plotted in Fig. 3 with examples shown in Fig-
ure B4. PromptSMILES+RL is able to increase the unique 
fraction of SMILES generated in all cases and beyond 
the baseline SAMOA method for 15/17 scaffolds while 
maintaining a high fraction of valid SMILES. Note that 
performance of different PromptSMILES parameters can 
be seen in Figure B1 and Figure B2. This indicates that 
purely prompt-based conditional generation can be used 
to decorate scaffolds of multiple attachment points (up 
to 5 in this experiment). From here on, PromptSMILES 
refers to PromptSMILES with RL for fine-tuning and 
conditional optimisation of a specified objective.

Scaffold decoration to satisfy chemical reaction constraints
Beyond the ability to generate valid and unique de novo 
molecules adhering to a pre-defined scaffold, it is fur-
ther of interest to be able to condition molecule genera-
tion according to some desirable endpoint, for example, 
predicted binding affinity or synthesizability. LibIN-
VENT [28] is a encoder-decoder style architecture that 
translates an input scaffold into output decorations. 
Furthermore, the training dataset is curated by split-
ting molecules based on a set of reaction rules, there-
fore, encouraging the implicit learning of reaction rules 
and improving synthesizability of proposed de novo 
molecules. We re-implemented the first experiment 
conducted by the authors of LibINVENT. Firstly, we pre-
train an RNN based on the same hyperparameters and 
training dataset provided by the authors. Note that we 
only take unique complete (non-sliced) molecules from 
the training dataset for training. Then we re-implement 
the RL objective tasks in MolScore [40] using the same 
trained QSAR model to predict the probability of Dopa-
mine Receptor D2 (D2) activity and a re-implementation 
of the reaction filters. The RL algorithm used is the same 
as REINVENT and is likewise compared to LibINVENT 
over a run for 100 epochs.

Fig. 3  The (a) validity and (b) uniqueness of 10,000 de novo SMILES decorating 17 different SureChEMBL scaffolds by PromptSMILES in comparison 
to baseline SAMOA. PromptSMILES results in a higher ratio of valid SMILES but a lower number of unique molecules compared to SAMOA. This 
is rescued by using PromptSMILES+RL with a simple representative objective. PromptSMILES experiments were replicated 3 times
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In the first sub-experiment, PromptSMILES is trained 
to optimize scaffold decoration to increase the pre-
dicted probability of D2 activity (note exact reproduc-
tion was not possible due to the of lack diversity filter 
specification by the authors of LibINVENT, therefore, 
any difference in diversity filter used may also lead to 
slightly different results). Table  1 shows the results of 
this experiment compared to those reported for Lib-
INVENT, with the top 3 molecules shown in Figure 
B10 and optimization curves shown in Figure B11. We 
further split the results based the parameters used for 
PromptSMILES i.e., if the prompt undergoes high-
est CLM likelihood optimisation (optimise) or not, if 
the attachment point is randomly selected (shuffle) 
or not, and whether network updates are per prompt 
completion (multi) or not. For the task of optimizing 

D2 predicted probability of activity without regard for 
synthesizability, PromptSMILES generates a higher 
number of successful compounds than LibINVENT 
in 7/8 configurations, resulting in a higher yield, and 
even with a higher average score in the resulting data-
set in 2/8 configurations. Furthermore, if an example 
PromptSMILES configuration is run for more epochs 
to allocate a grace number of initial RL epochs to the 
transfer learning task of iterative prompting, Table  1 
shows that average score increases further.

In the second sub-experiment, PromptSMILES is 
trained to both optimize scaffold decoration to increase 
the predicted probability of D2 activity, as well as, adhere 
to a selective reaction filter. The selective reaction fil-
ter specifies that the first attachment point should be 
decorated via an amide coupling and the second via a 

Table 1  PromptSMILES optimization for a QSAR model with no reaction filters

Best value is highlighted in bold if better than the baseline approach, and italics otherwise. This is repeated for Epochs 100-200

PromptSMILES experiments were replicated 3 times

*Longer run from selected configuration shows continued improvement in average score

Method No. successful compounds Yield Average score

LibINVENT 10,510 ± 69 0.821 ± 0.005 0.722 ± 0.005

PromptSMILES 10,748 ± 215 0.831 ± 0.016 0.636 ± 0.044

PromptSMILES (optimise) 11,075 ± 88 0.857 ± 0.007 0.657 ± 0.006

PromptSMILES (multi)* 10,622 ± 310 0.822 ± 0.024 0.714 ± 0.035

PromptSMILES (optimise,multi) 10,833 ± 183 0.839 ± 0.014 0.727 ± 0.007

PromptSMILES (shuffle) 10,130 ± 460 0.784 ± 0.036 0.629 ± 0.055

PromptSMILES (optimise,shuffle) 10,781 ± 206 0.834 ± 0.016 0.686 ± 0.011

PromptSMILES (multi,shuffle) 10,636 ± 162 0.823 ± 0.013 0.732 ± 0.003
PromptSMILES (optimise,multi,shuffle) 10,704 ± 113 0.828 ± 0.008 0.718 ± 0.011

PromptSMILES* (Epoch: 100–200) 10,342 ± 90 0.816 ± 0.007 0.762 ± 0.009

Table 2  PromptSMILES optimization for a QSAR model with a selective reaction filter

Best value is highlighted in bold if better than the baseline approach, and italics otherwise. This is repeated for Epochs 100-200

PromptSMILES experiments were replicated 3 times

*Longer run from selected configuration shows continued improvement in average score and satisfaction of reaction filters

Method No. successful 
compounds

Yield Average score Ratio of 
satisfied 
reaction filters

LibINVENT 10,454 ± 192 0.817 ± 0.015 0.729 ± 0.008 0.892 ± 0.032
PromptSMILES 10,739 ± 320 0.831 ± 0.025 0.695 ± 0.012 0.730 ± 0.027

PromptSMILES (optimise) 10,410 ± 193 0.805 ± 0.015 0.682 ± 0.003 0.693 ± 0.021

PromptSMILES (multi) 10,569 ± 175 0.818 ± 0.014 0.748 ± 0.020 0.775 ± 0.016

PromptSMILES (optimise,multi) 10,631 ± 179 0.822 ± 0.014 0.756 ± 0.010 0.778 ± 0.012

PromptSMILES (shuffle) 10,444 ± 359 0.808 ± 0.028 0.708 ± 0.023 0.715 ± 0.038

PromptSMILES (optimise,shuffle) 11,162 ± 108 0.864 ± 0.008 0.697 ± 0.005 0.766 ± 0.019

PromptSMILES (multi,shuffle)* 10,816 ± 157 0.837 ± 0.012 0.775 ± 0.010 0.792 ± 0.010

PromptSMILES (optimise,multi,shuffle) 10,733 ± 192 0.830 ± 0.015 0.748 ± 0.016 0.788 ± 0.014

PromptSMILES* (Epoch: 100–200) 10,736 ± 40 0.830 ± 0.003 0.818 ± 0.005 0.827 ± 0.004
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Buchwald-Hartwig reaction. Otherwise the same param-
eters apply as in the first part of the experiment. Table 2 
shows that for 6/8 configurations, more successful com-
pounds are found than LibINVENT resulting in a higher 
yield, and with a higher average score (examples shown 
in Figure B12 and optimisation curves in Figure B13). 
Meanwhile, the ratio of satisfied reaction filters doesn’t 
quite outperform LibINVENT for any configuration. 
However, considering that in comparison there is no pre-
training based on molecules already sliced by these reac-
tion rules as in LibINVENT, PromptSMILES manages to 
first adapt to the task of scaffold decoration then learn 
to decorate the scaffold such that in the best case almost 
80% of molecules satisfy both reaction filters. Similar 
to the first sub-experiment, this improves for a selected 
configuration to approximately 83%, if the first epochs 
are allocated to transfer learning.

Scaffold decoration and objective optimisation 
with unspecified attachment points
In some cases, there may not be any specified or desired 
scaffold attachment points. Our approach can be trivially 
extended to this scenario by simply viewing every atom 
with available valence as being an attachment point. To 
demonstrate this, we re-implement the scaffold-con-
strained GuacaMol benchmarks proposed by Maziarz 
et  al. [31]. This benchmark specifies four scaffolds for 
scaffold-constrained generation and respective scor-
ing functions to evaluate de novo molecules. The prior 
used was trained on the GuacaMol dataset and the opti-
mization algorithm used is the same as in REINVENT, 
run for 500 epochs. For each scaffold, we specify every 
atom as an available attachment point (see Figure B5). 
The results of this benchmark are shown in Table  3 in 
comparison to other scaffold-constrained generative 
methods as reported. Here, as there are more attach-
ment points and no diversity filters in the scoring func-
tions, we run PromptSMILES with shuffle and prompt 
optimisation and only investigate the use of multiple RL 
updates or not. Although PromptSMILES gets the low-
est overall score on the benchmark, it still scores highly 
with a comparable score of 0.87 or 0.90 and a comparable 

quality metric of 0.53 for the top 100 proposed com-
pounds. However, there are some nuances to the use of 
SMILES prompts for these benchmark tasks. For exam-
ple, for the factor Xa task, the similarity objective should 
require the model to connect two atoms of the substruc-
ture to form an oxazolidinone. However, this requires 
that the CLM appends a ring connection to one attach-
ment point without closing it, followed by a closing ring 
connection to another attachment point at a later itera-
tion. This process would result in an invalid SMILES 
string in-between iterations. This is a limitation of our 
current implementation which requires RDKit to parse 
a molecule at each iteration, rather than the concept of 
this approach. For, factor Xa, this can be circumvented by 
shortening the scaffold-prompt so that the CLM extends 
a single attachment point and can open and close a ring 
within one iteration (see Figure B5). Table 3 shows that 
by simplifying the factor Xa scaffold, the quality met-
ric matches (and sometimes exceeds) state-of-the-art 
compared to other approaches albeit a limited compari-
son. The same nuance applies to macrocyclisation of 
lorlati, however, this can not be circumvented as easily 
and requires an implementation without requiring valid 
molecules at each iteration. This task is predominantly 
responsible for decreasing the average score (see Fig-
ure B6 and Figure B7). Interestingly, the use of multiple 
RL updates and therefore stronger optimisation ability 
increased the score but decreased the chemical quality 
of the top 100 compounds. This is suggestive of mode 
collapse which may require a diversity filter to circum-
vent. We also note that most objectives are optimized by 
approximately 300 epochs (see Figure B6) which required 
237± 180 minutes ( 215± 169 for multi) on a single 
NVIDIA RTX 4090 with the scoring functions utilising 
1 CPU core. This is significantly more efficient than the 
reported value of MoLeR of 6 to 130 GPU hours [31].

Linking two fragments
In order to assess the performance of linking two frag-
ments together, we re-implement the same experiment 
as for LinkINVENT [29]. LinkINVENT is the same 

Table 3  Results on four additional scaffold-based GuacaMol tasks

PromptSMILES experiments were replicated 3 times

Numbers reported in parenthesis are with the simplified factor Xa scaffold

Method Score Quality

CDDD+MSO 0.92 0.59

MNCE-RL 0.95 0.47

MoLeR+MSO 0.93 0.63

PromptSMILES (optimise,shuffle) 0.87 ± 0.10 (0.88 ± 0.10) 0.53 ± 0.26 (0.61 ± 0.19)

PromptSMILES (optimise,shuffle,multi) 0.90 ± 0.09 (0.90 ± 0.09) 0.46 ± 0.33 (0.45 ± 0.33)
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encoder-decoder RNN as used in LibINVENT, however, 
the model is trained to translate two fragments into a 
linker. Similarly, we pre-train a decoder-only RNN using 
the same model hyperparameters and training dataset 
but extracting unique complete (non-sliced) molecules. 
This experiment is divided into three sub-experiments: 
(1) to control linker length, (2) to control linker linearity 

and (3) to control linker flexability. All RL objectives were 
re-implemented and available to use with MolScore [40].

Figure  4 shows the results of PromptSMILES 
(optimise,shuffle) for each sub-experiment. This shows 
that the results are comparable to those reported by 
LinkINVENT i.e., RL is able to teach the decoder-only 

Fig. 4  Fragment linking using PromptSMILES (optimise,shuffle) while controlling linker properties via RL as conducted in LinkINVENT. The objectives 
can be categorised into three experiments (a) controlling the linker length, (b) controlling the linker linearity, and (c) controlling the linker 
flexibility i.e., ratio of rotatable bonds where low is 0–30%, moderate is 40–60% and high is 70–100%. Random samples taken from each objective 
in experiment (c) are shown. PromptSMILES experiments were replicated 3 times
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model to generate linkers that satisfy a number of dif-
ferent properties. Therefore, PromptSMILES addition-
ally enables the use of a pre-trained CLM for linker 
generation.

Linking more than two fragments
The ability to link more than two fragments together 
extends the practical utility to scenarios where main-
taining more sub-structures is desirable. For example, if 
a molecule extends into more than two important sub-
pockets in a binding pocket that should be maintained, 
but a new scaffold is of interest. PromptSMILES also 
extends to this scenario with some adaptation. To test the 
generalization of PromptSMILES to link more than two 
fragments, we run an experiment to attempt to recover 
Atorvastatin, a HMG-CoA reductase inhibitor pre-
scribed for the treatment of hypercholesterolemia [41, 
42]. The RL objective was the Tanimoto similarity to the 
reference compound.

Figure 5 shows the score achieved when running base-
line optimization (de novo generation) or constrained 
to linking two, three or even four sub-structures of the 
reference compounds as fragments. Firstly, constrain-
ing generation to a larger number of predefined frag-
ments increases basal similarity to Atorvastatin at Epoch 
0 as expected, depicting the benefit of specifying apriori 
knowledge of chemistry if known or desired. Secondly, 
regardless of the number of fragments, RL is still able to 
learn how to improve the reward and increase similarity 
to Atorvastatin. Interestingly, Fig. 5a and b shows that the 
use of two fragments eventually achieves a higher score 
than the use of three fragments. This also corresponds 
to a switch in approach from Algorithm 2 to 3 which is 
conceptually more difficult due to a reliance on the sto-
chasticity of the CLM with respect to the placement of 
fragments to the linker. Additionally, Figure B14 shows 
that the CLM still learns to generate the unspecified frag-
ments. But, specifying more apriori knowledge with four 

Fig. 5  Fragment linking more than two fragments using PromptSMILES (optimise,shuffle) while maximizing similarity to Atorvastatin via RL. All 
combinations of the four fragments shown are investigated. a Average similarity to Atorvastatin by the number of fragments linked, b Top-10 
similarity, and c the Top-10 similarity by the precise combination of fragments linked
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fragments still achieves a higher score overall and could 
prove a useful capability in practice.

Also observable is with an increasing number of frag-
ments there is an increasing delay in learning while 
the model adapts to the new type of task. As shown in 
Fig. 5a, the baseline approach starts increasing similar-
ity immediately, however, on average linking two, three, 
or four fragments first sees a dip in Atorvastatin simi-
larity at approximately 30, 40 and 50 Epochs before an 
increase, respectively. In the context of using specially 
curated grammars, datasets or architectures, we think 
that this initial delay in learning is a worthwhile trade-
off and still more efficient overall.

Switching between scaffold decoration and fragment 
linking
One key advantage of PromptSMILES is the ability to 
switch from scaffold decoration to fragment linking and 
vice versa without the need to use an alternative model or 
re-train a model. We have demonstrated this by repeat-
ing the LibINVENT experiment of optimizing the D2 
receptor activity score but switching from de novo sam-
pling, to scaffold decoration, to fragment linking, as well 
as introducing a new objective to the task part way, much 
like curriculum learning. Figure 6 shows the evolution of 
this practical flexibility experiment. This shows that sim-
ply adding the D2-based scaffold constraints increases the 
distribution of D2 activity score for 1000 molecules sam-
pled from the unconditioned prior. Then, RL is used to 

further optimize this score for 50 steps and a further 1000 
molecules are sampled with scaffold constraints demon-
strating further improvement of the score. A generated 
molecule at step 50 is chosen to mimic a compound that 
has promising decorative groups and is now of interest to 
search for new scaffolds/linkers. The fragments extracted 
are used as the basis for fragment linking, the same agent 
is sampled with 1000 fragment linked molecules show-
ing a higher D2 score distribution than de novo mol-
ecules sampled from the unconditioned prior. Similar to 
LinkINVENT, a linker linearity objective is introduced to 
ensure a certain degree of linearity. RL is used to further 
optimize both these objectives showing maintenance of 
D2 score and an increase in linker linearity. Overall, this 
demonstrates the flexibility to switch between de novo 
design, scaffold decoration, and fragment linking with 
the same chemical agent.

Conclusion
In this work, we have proposed an iterative method of 
prompting we call PromptSMILES to achieve scaffold 
decoration and fragment linking (a.k.a. scaffold hopping) 
with CLMs in drug design. In combination with RL, we 
show that decoder-only CLMs can quickly adapt to the 
task of iterative prompting as well as maintain the abil-
ity to optimize arbitrary objectives. This was done by 
demonstrating comparable or improved performance 
for a variety of orthogonal approaches and different 
objectives. The ability to link more than two fragments 
in a non-linear way is a further extension to practical 

Fig. 6  Flexability of PromptSMILES (optimise, shuffle) on the LibINVENT D2 experiment. From left to right: Distribution of D2 activity score 
of de novo molecules sampled from the unconditioned prior, distribution of D2 activity score of scaffold constrained molecules sampled 
from the unconditioned prior, RL optimization of LibINVENT D2 task with scaffold constraints, distribution of D2 activity score of scaffold constrained 
molecules sampled from the trained agent at 50 steps, distribution of D2 activity score of fragment constrained molecules sampled from the trained 
agent at 50 steps (fragments selected from a promising generated molecule), RL optimization of LibINVENT D2 task with an additional linker linearity 
objective and fragment constraints
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utility. Crucially, this method does not require a bespoke 
architecture, bespoke grammar, or even retraining of a 
SMILES-based decoder-only model. Therefore, with the 
same pre-trained CLM, you can conduct de novo genera-
tion, scaffold decoration, and fragment linking.

Appendix A
Experiments
We endeavoured to follow model architectures and 
parameters to compared models in each experiment 
where possible, with the exception that we always 
trained the respective RNN with SMILES augmentation 
by 10-fold restricted randomization [43]. This was done 
due to the fact that PromptSMILES rearranges SMILES 
strings forming non-canonical representations. All objec-
tives were implemented with MolScore [40], details 
can be found in the configuration files (https://github.
com/MorganCThomas/MolScore/tree/main/molscore/
configs/PromptSMILES).

Scaffold decoration of drug‑like scaffolds at specified 
attachment points
This experiment was a re-implementation based on an 
experiment by Langevin et  al. [26] to compare to the 
reported results for SAMOA made available by the 
authors.

CLM The CLM used in this experiment was an RNN 
with 3 layers of GRU cells, a hidden dimension size of 
512, embedding size of 128 and Adam optimizer.

Dataset and Training The CLM was trained on the 
ChEMBL without SureChEMBL scaffolds provided by 
the authors, with a batch size of 128 and learning rate of 
0.001 for 5 epochs.

Scaffold decoration to satisfy chemical reaction constraints
This experiment was a re-implementation based on 
an experiment by Fialková et  al. [28] to compare to the 
reported results for LibINVENT.

CLM The CLM used in this experiment was an RNN 
with 3 layers of LSTM cells, a hidden dimension size of 
512, embedding size of 256 and Adam optimizer with a 
dropout rate of 0.1.

Dataset and Training The CLM was trained on the 
ChEMBL dataset provided by the authors. As this data-
set comprised of tuples of scaffold, decorations, and com-
plete molecules, we only take the unique set of complete 
molecules for training. The model was trained with a 
batch size of 128 and learning rate of 0.001 for 5 epochs.

Scaffold decoration and objective optimisation 
with unspecified attachment points
This experiment was a re-implementation based on the 
benchmark proposed by Maziarz et al. [31] to compare to 
the reported results for MoLeR. As the architecture dif-
fers between CLMs and the graph-based neural network 
used in MoLeR, we used this as an example of using an 
already trained CLM from previous work [13].

CLM The CLM used in this experiment was an RNN 
with 3 layers of LSTM cells, a hidden dimension size of 
512, embedding size of 512 and Adam optimizer with a 
dropout rate of 0.2.

Dataset and Training The CLM was trained on the 
GuacaMol train dataset [15] with a batch size of 512 and 
learning rate of 0.001 for 10 epochs.

Linking two fragments
This experiment was a re-implementation based on an 
experiment by Guo et al. [29] to compare to the reported 
results for LinkINVENT.

CLM The CLM used in this experiment was an RNN 
with 3 layers of LSTM cells, a hidden dimension size of 
512, embedding size of 256 and Adam optimizer.

Dataset and Training The CLM was trained on the 
ChEMBL dataset provided by the authors. As this dataset 
comprised of tuples of fragments, linker, and complete 
molecules, we only take the unique set of complete mol-
ecules for training. The model was trained with a batch 
size of 128 and learning rate of 0.001 for 5 epochs.

Linking more than two fragments
This new experiment was to demonstrate the ability to 
link more than two fragments together. The CLM, data-
set and training was the same as for the previous experi-
ment linking two fragments together.

Switching between scaffold decoration and fragment 
linking
This new experiment demonstrated the flexibility to 
switch between de novo and constrained generation 
with the same CLM. This CLM, dataset and training was 
the same as in the comparison to LibINVENT. The first 
objective used for RL is the same as the first sub-experi-
ment in the comparison to LibINVENT (i.e., without the 
use of reaction filters). For the second objective, a linker 
linearity scoring parameter is added resulting in a score 
of 1 if the linker length ratio is above 0.5, and 0 otherwise. 
This score is then combined with the others via the prod-
uct aggregation.
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