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Abstract   
Pretrained deep learning models self-supervised on large datasets of language, image, and graph representa-
tions are often fine-tuned on downstream tasks and have demonstrated remarkable adaptability in a variety 
of applications including chatbots, autonomous driving, and protein folding. Additional research aims to improve 
performance on downstream tasks by fusing high dimensional data representations across multiple modalities. In 
this work, we explore a novel fusion of a pretrained language model, ChemBERTa-2, with graph neural networks 
for the task of molecular property prediction. We benchmark the MolPROP suite of models on seven scaffold split 
MoleculeNet datasets and compare with state-of-the-art architectures. We find that (1) multimodal property pre-
diction for small molecules can match or significantly outperform modern architectures on hydration free energy 
(FreeSolv), experimental water solubility (ESOL), lipophilicity (Lipo), and clinical toxicity tasks (ClinTox), (2) the Mol-
PROP multimodal fusion is predominantly beneficial on regression tasks, (3) the ChemBERTa-2 masked language 
model pretraining task (MLM) outperformed multitask regression pretraining task (MTR) when fused with graph 
neural networks for multimodal property prediction, and (4) despite improvements from multimodal fusion 
on regression tasks MolPROP significantly underperforms on some classification tasks. MolPROP has been made 
available at https://​github.​com/​merck/​MolPR​OP.

Scientific contribution   
This work explores a novel multimodal fusion of learned language and graph representations of small molecules 
for the supervised task of molecular property prediction. The MolPROP suite of models demonstrates that lan-
guage and graph fusion can significantly outperform modern architectures on several regression prediction tasks 
and also provides the opportunity to explore alternative fusion strategies on classification tasks for multimodal 
molecular property prediction.
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Introduction
Learned molecular representations have undergone rapid 
evolution in recent years exploring a variety of encod-
ing mechanisms including string line annotations (e.g., 

SMILES [1], SMARTS [2], or SELFIES [3]) and graph 
representations [4]. These representations are commonly 
pretrained in a self-supervised fashion and/or supervised 
on downstream tasks such as molecular property predic-
tion. While line annotations such as SMILES (Simpli-
fied Molecular-Input Line Entry System) [1] strings are 
compact, have a well-defined grammar, and contain large 
accessible datasets for self-supervised pretraining, lan-
guage models do not explicitly encode physical informa-
tion about molecular topology. This has prompted efforts 
to represent molecules as graphs to explicitly capture 
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connectivity information. Indeed, significant progress 
has been demonstrated in terms of sample efficiency and 
generalizability to new molecules by explicitly represent-
ing molecules as graph neural networks (GNNs) where 
local information is aggregated and passed (i.e., mes-
sage passing) across the graph structure according to its 
connectivity [5–11]. Additional work has also explored 
incorporating 3D information such as bond distances 
[12, 13] or pretraining GNNs on various tasks such as 
atom masking or subgraph removal [14].

While identifying the best pretraining task for lan-
guage models and GNNs continues to be an active area of 
research, language models have demonstrated evidence 
of the scaling hypothesis across multiple domains includ-
ing natural language [15], protein language [16–18], and 
molecular language [19–22]. The scaling hypothesis 
states that model representational power will continue 
to grow with increased compute, model size, and pre-
training data [23]. In this work, we aim to leverage the 
representational power of a pretrained language model, 
ChemBERTa-2 [20], by fusing the language representa-
tion to graph representations during fine-tuning on the 
task of molecular property prediction. We explore Chem-
BERTa-2 language models [20] pretrained on 77 million 

molecules from PubChem [24] for two separate tasks: 
masked language modeling (MLM) and multitask regres-
sion (MTR). The ChemBERTa-2 SMILES language model 
contains a maximum vocabulary size of 591 tokens 
and maximum context length of 512 tokens. The MLM 
model, ChemBERTa-2-77 M-MLM, is pretrained to pre-
dict randomly masked tokens (15%) in the input SMILES 
string and the MTR model, ChemBERTa-2-77  M-MTR, 
is pretrained to predict 200 normalized molecular prop-
erties from RDKit [25]. In this work, the language models 
are fused to the molecular graph representations by map-
ping the heavy atom tokens to the corresponding heavy 
atom nodes in the graph (Fig. 1). We explore the fusion 
of these SMILES language models with the graph convo-
lutional network (GCN) [5] and graph attention network 
(GATv2) [7] architectures.

The MolPROP suite of models aims to investigate 
language and graph synergy for the task of molecular 
property prediction. The MolPROP training objectives 
span classification and regression tasks from quantum 
mechanical properties of molecules such as atomiza-
tion energy to qualitative physiological outcomes such 
as clinical toxicity (Fig.  1). We find that predominantly 
regression tasks benefit from the fusion of language and 

Fig. 1  Graphic of the MolPROP architecture. This includes an example of the molecule Molnupiravir. The molecule (top left) is represented 
as a heavy atom graph (e.g., C, N, O) with nodes defined as circles and edges as lines connecting the circles. The molecule is also represented 
as a SMILES string (bottom). The ChemBERTa-2 tokenized language representation is shown above the SMILES string where each token is defined 
by a color change (e.g., [C@@H] is one token). The attention mask is displayed above the token representation which assigns (1) or does not assign 
(0) attention to the token within the ChemBERTa-2 transformer during fine-tuning of the MolPROP models. The color scheme is defined 
as carbon=black, nitrogen=blue, oxygen=red, and gray=tokens not assigned attention (0) during fine-tuning and graph fusion. The small black 
arrows and boxes depict the token representations being concatenated onto their respective graph node features during language and graph 
fusion
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graph representations while the benefit is less clear for 
classification tasks. The demonstrated synergy on regres-
sion tasks suggests that language and graph integration 
can be beneficial for numerous prediction tasks and also 
provides opportunities to explore alternative fusion strat-
egies for multimodal molecular property prediction.

Methods
Datasets
We evaluate the MolPROP suite of models on 4 regres-
sion and 3 classification tasks from the MoleculeNet [26] 
datasets which range in size (100  s to 1000  s of exam-
ples). The regression task datasets include hydration free 
energy (FreeSolv), experimental water solubility (ESOL), 
lipophilicity (Lipo), and quantum mechanical atomi-
zation energy (QM7). The classification task datasets 
include inhibitory binding of human β secretase (BACE), 
blood brain barrier penetration (BBBP), and clini-
cal toxicity (ClinTox). The datasets are split into train-
ing, validation, and test sets (80/10/10) according to the 
Bemis-Murko scaffold split procedure from DeepChem 
[27] designed to be challenging, realistic, and compara-
ble to other published models. Ensembles of models are 
trained by randomly 10-fold splitting the training/valida-
tion set to estimate uncertainty on the test set. Models 
were first categorized into supervised, supervised with 
graph pretraining, supervised with language pretraining, 
and supervised with language and graph. The significance 
of difference between models is computed from the mean 
and standard deviation with a two-tailed t-test and the 
p-values represent the confidence level of the significance 
test (i.e., * = 95% confidence or p < 0.05, ** = 99% confi-
dence or p < 0.01, and ***= 99.9% confidence p < 0.001). 
The best performing models from each category were 
compared throughout the manuscript.

Language and graph model fusion
ChemBERTa-2 Language Model: ChemBERTa-2 is a 
BERT-like [28] language model with ∼46  M parameters 
adapted from the RoBERTa [29] architecture. The model 
is pretrained on a large corpus of 77 million SMILES 
strings aggregated from PubChem [24]. The 591 length 
token vocabulary was annotated from common SMILES 
characters found in the PubChem [24] dataset and a 
maximum sequence length of 512 tokens was set during 
the pretraining phase. Although masked language mod-
eling is the most common pretraining task for language 
models, there is at least a hypothesis that this pretrain-
ing task may be insufficient due to an overrepresentation 
of carbon tokens in small molecule datasets. Therefore, 
we include and explore two pretraining tasks for fusing 
ChemBERTa-2 language representations: masked lan-
guage modeling (MLM) and multitask regression (MTR). 

The MLM task, ChemBERTa-2-77  M-MLM, is a stand-
ard masked language modeling task where 15% of the 
tokens are randomly masked, and the model is trained 
to predict the masked tokens. The MTR task, Chem-
BERTa-2-77  M-MTR, is trained to predict 200 mean-
normalized molecular properties calculated in RDKit 
[25] directly from SMILES strings.

Graph Neural Networks: Graphs are seamless repre-
sentations of molecules commonly defined by nodes as 
atoms (n) and edges as bonds (e) of a given graph struc-
ture G(n,e). In graph neural networks (GNNs), the nodes 
update their state by aggregating information from the 
edges of neighboring nodes. GNN architectures differ 
in the mechanism by which information is aggregated 
and combined to update the node states. In this work, 
we explore two GNN architectures: graph convolu-
tional networks (GCN) [5] and graph attention networks 
(GATv2) [7]. The GCN architecture is a common mes-
sage passing neural network where the spectral graph 
convolution is defined by estimating the product of the 
graph nodes and a diagonalized filter using a first order 
approximation of Chebyshev polynomials [5]. The GATv2 
architecture is a recent extension of the original trans-
former generalization on graphs (GAT) [6]. In short, this 
attention-based neighborhood aggregation mechanism 
updates node states by computing a weighted average 
of its attended neighbors [7]. We elected to explore both 
GCN and GATv2 architectures because performance 
has been demonstrated to vary between modern GNN 
architectures depending on the property prediction task. 
The graphs were constructed using RDKit from SMILES 
strings and converted to torch geometric objects [30]. 
The graphs were initialized with node features (atomic 
number, formal charge, hybridization, and chirality) and 
edges features (bond type and bond direction). Hydro-
gens were excluded from the graph representations for 
the practical purpose of fusing the ChemBERTa-2 lan-
guage model tokens to the atom node features.

Multimodal fusion: The fusion of language and graph 
representation is commonly performed in deep learn-
ing for proteins because the number of nodes, typically 
defined as the alpha carbons in the residues, corresponds 
to the number of residues in the protein. The residue or 
token embeddings can then be concatenated onto the 
graph node features during fine-tuning and this gener-
ally boosts performance on downstream tasks [31, 32]. 
In contrast, mapping the tokens from small molecule 
SMILES string language models to the graph representa-
tion is non-trivial because there does not exist a 1:1 map-
ping of tokens to nodes. For example, in ChemBERTa-2 
there are 591 tokens in the vocabulary, but only a sub-
set of those tokens contain unique atom types (H, C, N, 
O, etc.). Moreover, some tokens contain multiple atoms 
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(e.g., [C@@H], [ NH2+ ], etc.) making the mapping of 
tokens to nodes ambiguous. In this work, we circumvent 
this ambiguity by simply extracting the tokens containing 
heavy atoms and mapping them to the nodes containing 
heavy atoms (Fig.  1). This is accomplished by assigning 
attention weight to the heavy atom tokens in the atten-
tion mask during fine-tuning and concatenating these 
heavy atom token representations onto the heavy atom 
nodes in the small molecule graph representation (i.e., 
hydrogens are ignored). This is a simple and effective 
strategy for exploring the fusion of language and graph 
representations for small molecules, however, future 
work may explore strategies that include hydrogens and/
or a dynamic mapping between the token and graph rep-
resentations. Moreover, alternative strategies for graph 
and language fusion may utilize graph pretraining [11, 
14], an attention mechanism [33], or convolutional fea-
ture extraction of the language representation before 
concatenating to the graph nodes [34].

Hyperparameter optimization
Hyperparameters were selected using the Bayesian 
optimization with hyperband (BOHB) [35] algorithm 
implemented by Ray Tune [36] (Table 1). This algorithm 
reduces hyperparameter search wall time up to 50X by 
combining the sample efficiency of Bayesian optimization 
and the adaptive sampling/ early stopping advantages of 
bandit methodologies. Hyperparameters included the 
learning rates for the language and graph module, the 
number of layers to freeze in the ChemBERTa-2 language 
model (0-3), the number of steps for linear increase 
warm-up, and the dropout fraction in the dense layer 
(Table 1). The training loss was computed corresponding 
to previously used metrics in the literature (i.e., RMSE: 
FreeSolv, ESOL, Lipo; MAE: QM7; BCE: BACE-1, BBBP, 
ClinTox) where RMSE, MAE, and BCE correspond to the 
root-mean-square error, mean absolute error, and binary 
cross entropy, respectively. The best hyperparameter set 
was selected based on the best performance across the 
k-fold validation sets after a 50 sample BOHB run (i.e., 
lowest RMSE: FreeSolv, ESOL, Lipo; lowest MAE: QM7; 

highest ROC-AUC: BACE, BBBP, ClinTox) where ROC-
AUC corresponds to the receiver operating characteris-
tic area under the curve. Final performance is evaluated 
based on the average and standard deviation of the k 
models on the test set. The learning rate decay strategy 
was adopted from BERT with linear increase warm-up 
and inverse square root decay [28]. All runs were per-
formed for 50 epochs, with batch size 16, at 32-bit pre-
cision, utilizing the Adam optimizer [37], and on V100 
GPUs.

Results and discussion
The MolPROP suite of models includes two pretrained 
ChemBERTa-2 language models (MLM and MTR) [20] 
fused to two graph neural network architectures (GCN 
and GATv2) [5, 7] for a total of four models. MolPROP 
models were benchmarked on seven MoleculeNet data-
sets [26] that are 80/10/10 split into training, validation, 
and test sets based on the Bemis-Murko scaffold split 
implementation from DeepChem [27]. The splits and 
training losses were defined according to their respec-
tive metrics in the literature to allow for fair comparison 
to modern architectures. All models are hyperparameter 
optimized using the BOHB algorithm [35] and trained 
for 50 epochs. We evaluate the performance of Mol-
PROP models on the test set by reporting the average 
and standard deviation of the k models (k=10) trained on 
the training/validation set. We find that MolPROP mod-
els significantly outperform modern architectures such 
as Chemprop [9] and MolCLR [14] on hydration free 
energy (FreeSolv), experimental water solubility (ESOL), 
and clinical toxicity (ClinTox) tasks. We also find that 
MolPROP models match modern architectures on lipo-
philicity (Lipo). However, MolPROP models significantly 
underperform on quantum mechanical atomization 
energy (QM7), inhibitory binding of human β secretase 
(BACE), and blood brain barrier penetration (BBBP).

Baselines
The baseline models for comparison were aggregated 
from the reported literature and categorized into super-
vised, supervised with graph pretraining, and super-
vised with language pretraining. For fair comparison, 
we only included models that utilized identical perfor-
mance metrics and Bemis-Murko scaffold splits [27] 
on the datasets. The supervised models include shallow 
learning with random forest (RF) [14] and support vec-
tor machine (SVM) [14] on molecular fingerprints from 
RDKit [25]. Additional supervised models include heavy-
atom graph neural networks: graph convolution net-
work (GCN) [5], graph attention netowrk (GATv2) [7], 
graph isomorphism network (GIN) [38], SchNet [12], 

Table 1  The searched MolPROP hyperparameters spaces

For each model, the respective hyperparameter sets used in 50 sample Bayesian 
optimization with hyperband (BOHB) runs

Hyperparameters MolPROP

lr coder loguniform(1e-5, 1e-2)

lr lang loguniform(1e-9, 1e-6)

lr step randint(1,5)

language freeze layer count randint(0,3)

dense layer dropout uniform(0.1, 0.5)
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3D Infomax [13], MGCN [8], and D-MPNN (Chemprop) 
[9]. The supervised with graph pretraining include Hu 
et  al. [10], N-Gram [11], MolCLRGCN, and MolCLRGIN 
[14]. Finally, the supervised with language pretrain-
ing included ChemBERTa-2-77  M-MLM and Chem-
BERTa-2-77 M-MTR [20]. If reported, the estimation of 
uncertainty is included.

MolPROP regression benchmarks
The experimental hydration free energy (FreeSolv) task 
is a regression task that aims to predict the measured 

free energy of hydration for a given molecule in kcal/
mol. The MolPROP models significantly outperforms 
baseline models achieving a RMSE 1.70 ± 0.09 and 
1.73 ± 0.14 for the MolPROPGATv2-ChemBERTa-2-MLM and 
MolPROPGCN-ChemBERTa-2-MLM variants, respectively 
(Table  2). These MolPROP models significantly outper-
form the best supervised random forest (p=0.002). In 
addition, the MolPROP models also outperform the best 
supervised with graph pretraining model MolCLRGIN (p 
= 0.0001). Importantly, the MolPROP models outper-
formed fine-tuned versions of the graph-only (GCN and 

Table 2  MolPROP and baseline model performance on regression tasks

Model performance is assessed by the metric provided in the header: RMSE = root-mean-square error, MAE = mean absolute error

MolPROP mean and standard deviation of k-models are reported on the test set from 10-fold cross-validation

The baseline performances are reported from the literature. The columns are the model type, performance on the FreeSolv dataset, performance on the ESOL dataset, 
performance on the Lipo dataset, and performance on the QM7 dataset, respectively

The rows consist of model types separated by categorization: supervised, supervised with graph pretraining, supervised with language pretraining, and supervised 
with language and graph, respectively

The model category is partitioned by a black horizontal line. The best performing model for each class is italicized and the best deep learning model across categories 
is also bolded

Significance is determined by comparing the best models from their respective category. The significance of difference between means and standard deviations is 
determined by a two-tailed t-test and the p-values represent the confidence level of the significance test [ns] not statistically significant (p > 0.05)

*statistically significant (p < 0.05)

**statistically significant (p < 0.01)

***statistically significant (p < 0.001)

MODEL FreeSolv ESOL Lipo QM7

# Molecules 642 1128 4200 6830

Metric RMSE RMSE RMSE MAE

Supervised

 RF[14] 2.03 ± 0.22 1.07 ± 0.19 0.88 ± 0.04 122.7 ± 4.2

 SVM[14] 3.14 ± 0.00 1.50 ± 0.00 0.82 ± 0.00 156.9 ± 0.0

 GCN [5] 2.87 ± 0.14 1.43 ± 0.05 0.85 ± 0.08 122.9 ± 2.2

 GATv2[7] 3.14 ± 0.00 1.41 ± 0.00 0.89 ± 0.00 113.3 ± 0.0

 GIN[38] 2.76 ± 0.18 1.45 ± 0.02 0.85 ± 0.07 124.8 ± 0.7

 SchNet[12] 3.22 ± 0.76 1.05 ± 0.06 0.91 ± 0.10 74.2 ± 6.0 *

 3D Infomax[13] 2.23 ± 0.26 0.947 ± 0.04 0.739 ± 0.01 —

 MGCN[8] 3.35 ± 0.01 1.27 ± 0.15 1.11 ± 0.04 77.6 ± 4.7

 D-MPNN (Chemprop)[9] 2.18 ± 0.91 0.98 ± 0.26 0.65 ± 0.05 ns 105.8 ± 13.2

Supervised with graph pretraining

 Hu et al. [10] 2.83 ± 0.12 1.22 ± 0.02 0.74 ± 0.00 110.2 ± 6.4

 N-Gram[11] 2.51 ± 0.19 1.10 ± 0.03 0.88 ± 0.12 125.6 ± 1.5

 MolCLRGCN[14] 2.39 ± 0.14 1.16 ± 0.00 0.78 ± 0.01 83.1 ± 4.0

MolCLRGIN[14] 2.20 ± 0.20 1.11 ± 0.01 0.65 ± 0.08ns 87.2 ± 2.0

Supervised with language pretraining

 ChemBERTa-2-77M-MTR[20] 2.515 ± 0.00 1.025 ± 0.00 0.987 ± 0.00 147.9 ± 0.00
 ChemBERTa-2-77M-MLM[20] 2.047± 0.00 0.889 ± 0.00 0.798 ± 0.00 172.8 ± 0.00

Supervised with Graph and Language

 MolPROPGCN-ChemBERTa-2-77M-MTR 2.15 ± 0.14 0.990 ± 0.09 0.812 ± 0.02 163.0 ± 29.8

 MolPROPGATv2-ChemBERTa-2-77M-MTR 2.05 ± 0.16 0.991 ± 0.11 0.799 ± 0.01 131.8 ± 11.2
 MolPROPGCN-ChemBERTa-2-77M-MLM 1.73 ± 0.14 0.806 ± 0.03 0.790 ± 0.02 136.4 ± 19.8

 MolPROPGATv2-ChemBERTa-2-77M-MLM 1.70 ± 0.09 ** 0.777 ± 0.02*** 0.733 ± 0.02 151.8 ± 10.0
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GATv2) and language-only (ChemBERTa-2-77  M-MLM 
and ChemBERTa-2-77  M-MTR) models in 4/4 cases 
for the FreeSolv regression task. Next, the experimen-
tal water solubility (ESOL) task is a regression task 
that aims to predict the logarithm of water solubility in 
mol/L for a given molecule. The MolPROP models sig-
nificantly outperform the baseline models achieving 
a RMSE 0.77 ± 0.02. Similarly, the MolPROP models 
significantly outperform the best supervised 3D Info-
max model (p=0.0001). Interestingly, the MolPROP 
variant MolPROPGCN-ChemBERTa-2-MLM is able to outper-
form both the GCN graph-only (p=0.0001)and Chem-
BERTa-2-MLM language-only models demonstrating 
synergy from representation fusion in the experimen-
tal water solubility task. Moreover, the MolPROP syn-
ergy is demonstrated by outperforming fine-tuned 
versions of the graph-only (GCN and GATv2) and lan-
guage-only (ChemBERTa-2-77  M-MLM and Chem-
BERTa-2-77 M-MTR) models in 4/4 cases for the ESOL 
regression task. Next, the lipophilicity (Lipo) task is a 
regression task that aims to predict the experimental 
octanol/water distribution coefficient for a given mol-
ecule (logP). MolPROPGATv2-ChemBERTa-2-MLM achieves 
comparable performance on the lipophilicty task to the 
best baseline models achieving a RMSE 0.733 ± 0.02. 
Despite competitive MolPROP performance to other 
baselines, Chemprop and MolCLRGIN significantly out-
perform on the Lipo regression task. However, similar to 
the FreeSolv and ESOL tasks, MolPROP models achieved 
better performance than fine-tuned versions of the 
graph-only (GCN and GATv2) and language-only (Chem-
BERTa-2-77  M-MLM and ChemBERTa-2-77  M-MTR) 
models in 4/4 cases on the Lipo regression task demon-
strating synergy from representation fusion. Finally, the 
quantum mechanical atomization energy (QM7) task is a 
regression task that aims to predict the total atomization 
energy for a given molecule. Interestingly, we found that 
SchNet was the best performing baseline model for quan-
tum mechanical properties despite its underperformance 
on other tasks (Table  2). MolPROP models significantly 
underperform SchNet (p<0.001) and other baseline mod-
els on the QM7 dataset which is likely because SchNet 
is a neural network designed to explicitly include paired 
atomic distances [12]. MolPROP and other baselines 
explicitly exclude hydrogens and other geometric fea-
tures (e.g., paired atomic distances) in the graph repre-
sentation which are critical to learn atomization energy. 
Future work may explore the fusion of language and 
graph representations that include hydrogens or addi-
tional geometric features to improve performance on 
quantum mechanical properties. We also found that for 
MolPROP multimodal representation fusion with Chem-
BERTa-2-MLM outperformed the ChemBERTa-2-MTR 

model on 3/4 regression tasks suggesting that the MLM 
pretraining task is more beneficial for downstream 
tasks. Overall, we find that MolPROP models can sig-
nificantly outperform or match modern architectures on 
experimental water solubility, hydration free energy, and 
lipophilicity tasks. Moreover, there is synergy from rep-
resentation fusion on these regression tasks as demon-
strated by the improved performance over their language 
and/or graph only counterparts (Table 2).

MolPROP classification benchmarks
To extend the MolPROP benchmarks to classification, we 
evaluated the MolPROP models on three classification 
tasks from the MoleculeNet datasets: inhibitory bind-
ing of human β secretase (BACE), blood brain barrier 
penetration (BBBP), and clinical toxicity (ClinTox). All 
model performance was assessed by the receiver operat-
ing characteristic area under the curve (ROC-AUC). The 
inhibitory binding of human β secretase (BACE) task is 
a binary classification task that aims to predict whether 
a given molecule is an inhibitor of BACE. The MolPROP 
models significantly underperform all baselines on the 
BACE classification task. The blood brain barrier pen-
etration (BBBP) task is a binary classification task that 
aims to predict whether a given molecule can penetrate 
the blood brain barrier (permeability). Similarly, the Mol-
PROP models significantly underperform all baselines on 
the BBBP classification task (Table 3). Surprisingly, for the 
BACE and BBBP classification tasks there is no evidence 
of representation fusion synergy in MolPROP variants 
demonstrated by the decreased performance compared 
to the graph-only (GCN and GATv2) and language-only 
(ChemBERTa-2-MLM and ChemBERTa-2-MTR) mod-
els. We further investigate this phenomenon in the "Abla-
tion experiments and embedding visualization" section. 
Finally, the clinical toxicity (ClinTox) task is a binary 
classification task that aims to predict whether a given 
molecule is toxic. Interestingly, the MolPROP models 
outperforms most baselines on the ClinTox classification 
task. For example, the MolPROPGATv2-ChemBERTa-2-MLM 
achieves an ROC-AUC of 95.2 ± 3.4% compared to 
the best baseline supervised model Chemprop which 
achieves an ROC-AUC of 90.5 ± 5.3% (p=0.047). Addi-
tionally, MolPROPGATv2-ChemBERTa-2-MLM slightly outper-
forms MolCLRGIN which is the best baseline model with a 
ROC-AUC 93.2 ± 1.7% (p=0.36). Moreover, all MolPROP 
variants achieved better performance than their graph-
only (GCN and GATv2) and language-only (Chem-
BERTa-2-MLM and ChemBERTa-2-MTR) counterparts 
demonstrating synergy from representation fusion on 
the ClinTox classification task. We also found that multi-
modal representational fusion with ChemBERTa-2-MLM 
outperformed ChemBERTa-2-MTR on 2/3 classification 
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tasks suggesting that the MLM pretraining task is more 
beneficial for downstream tasks (Table  3). Overall, we 
find that deep learning models can benefit from repre-
sentational fusion for classification tasks such as clinical 
toxicity, however, the guidelines for when and how rep-
resentational fusion is beneficial remains an open ques-
tion. Recent investigations have found that GNNs can be 
unstable when training on classifications tasks [39–43]. 
For example, GCNs have been reportedly unstable when 
the number of node features becomes too large [42] and 
GATv2 suffers from initialization instabilities [43]. These 
fundamental limitations of the GNNs may explain the 
more variable performance on classification tasks. Future 
work may explore alternative graph and language fusion 
strategies for small molecule classification tasks that 
utilizes graph pretraining [11, 14], an attention mecha-
nism [33], or convolutional feature extraction of the 
language representation [34]. Additional strategies may 
include distilling the language model embeddings from 
ChemBERTa before concatenating to the graph nodes to 
improve GCN and GATv2 stability on classification tasks.

Ablation experiments and embedding visualization
We further investigate the performance of the MolPROP 
fusion strategy by performing ablation experiments on 
the MolPROPGATv2-ChemBERTa-2-77  M-MLM architecture 
for both regression and classification tasks. We elect 
to perform ablation experiments on the best perform-
ing regression tasks, FreeSolv and ESOL, as well as all 
the classification tasks: BACE, BBBP, and ClinTox. The 
ablation experiments are performed by utilizing the 
exact hyperparameters found during hyperparameter 
optimization in (Table  2, 3) and retraining the mod-
els with the GATv2 or ChemBERTa-2-77  M-MLM 
model ablated from the architecture. For regression 
tasks, we demonstrate that the ablated GATv2 model 
underperforms the ablated ChemBERTa-2-77  M-MLM 
model on both FreeSolv and ESOL tasks; however, the 
MolPROPGATv2-ChemBERTa-2-77 M-MLM fusion is able to syn-
ergistically fuse both molecular representations to out-
perform either GATv2 or ChemBERTa-2-77  M-MLM 
alone (Table  4). For classification tasks, we find that 
the ablated GATv2 model similarly underperforms the 
ablated ChemBERTa-2-77  M-MLM model on both 
BACE and BBBP tasks (Table  4). In contrast to the 
regression tasks, the MolPROPGATv2-ChemBERTa-2-77  M-MLM 
fusion strategy is not synergistic for these classifica-
tion tasks and only achieves similar performance to the 
ChemBERTa-2-77  M-MLM ablated model (Table  4). 

Table 3  MolPROP and baseline model performance on 
classification tasks

Model performance is assessed by the metric provided in the header: ROC-AUC 
= receiver operating characteristic - area under the curve. MolPROP mean and 
standard deviation of k-models are reported on the test set from 10-fold cross-
validation. The baseline performances are reported from the literature

The columns are the model type, performance on the BACE dataset, 
performance on the BBBP dataset, and performance on the ClinTox dataset, 
respectively

The rows consist of model types separated by categorization: supervised, 
supervised with graph pretraining, supervised with language pretraining, and 
supervised with language and graph, respectively

The model category is partitioned by a black horizontal line. The best 
performing model for each class is italicized and the best deep learning model 
across categories is also bolded. Significance is determined by comparing the 
best models from their respective category

The significance of difference between means and standard deviations is 
determined by a two-tailed t-test and the p-values represent the confidence 
level of the significance test [ns] not statistically significant (p > 0.05)

*statistically significant (p < 0.05)

** statistically significant (p < 0.01)

*** statistically significant (p < 0.001)

MODEL BACE BBBP ClinTox

# Molecules 1513 2039 1478

Metric ROC-AUC​ ROC-AUC​ ROC-AUC​

Supervised

 RF[14] 86.7 ± 0.8 71.4 ± 0.0 71.3 ± 5.6

 SVM[14] 86.2 ± 0.0 72.9 ± 0.0 66.9 ± 9.2

 GCN[5] 71.6 ± 2.0 71.8 ± 0.9 62.5 ± 2.8

 GATv2[7] 57.9 ± 0.0 58.0 ± 0.0 54.1 ± 0.0

 GIN[38] 70.1 ± 5.4 65.8 ± 4.5 58.0 ± 4.4

 SchNet[12] 76.6 ± 1.1 84.8 ± 2.2 71.5 ± 3.7

 3D Infomax[13] 78.1 ± 1.3 68.3 ± 2.0 59.0 ± 5.4

 MGCN[8] 73.4 ± 3.0 85.0 ± 
6.4ns

63.4 ± 4.2

 D-MPNN (Chemprop)[9] 85.3 ± 5.3 71.2 ± 3.8 90.5 ± 5.3

Supervised with graph pretraining

 Hu et al.[10] 85.9 ± 0.8 70.8 ± 1.5 78.9 ± 2.4

 N-Gram[11] 87.6 ± 3.5 91.2 ± 
3.0ns

85.5 ± 3.7

 MolCLRGCN[14] 78.8 ± 0.5 73.8 ± 0.2 86.7 ± 1.0

 MolCLRGIN[14] 89.0 ± 
0.30**

73.6 ± 0.5 93.2 ± 1.7ns

Supervised with language pretraining

 ChemBERTa-2-77M-MTR[20] 73.5 ± 0.0 69.8 ± 0.0 23.9 ± 0.0

 ChemBERTa-2-77M-MLM[20] 79.9 ± 0.0 72.8 ± 0.0 56.3 ± 0.0

Supervised with language and graph

 MolPROPGCN-ChemBERTa-2-77M-MTR 68.4 ± 1.8 65.4 ± 1.7 91.0 ± 6.8

 MolPROPGATv2-ChemBERTa-2-77

M-MTR

68.7 ± 2.0 63.1 ± 2.3 93.3 ± 3.5

 MolPROPGCN-ChemBERTa-2-77M-MLM 66.5 ± 3.4 66.0 ± 2.4 94.1 ± 5.1

 MolPROPGATv2-ChemBERTa-2-77

M-MLM

65.6 ± 3.6 66.3 ± 2.5 95.2 ± 3.4ns
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Despite no synergy on the BACE and BBBP classifi-
cation tasks, the ClinTox task demonstrates that the 
MolPROPGATv2-ChemBERTa-2-77 M-MLM fusion strategy is able 
to synergize molecular representations from the ablated 
GATv2 and ChemBERTa-2-77 M-MLM models (Table 4). 
Overall, these results suggest that the MolPROP fusion 
strategy is predominantly beneficial for regression tasks. 
Future work may explore alternative fusion strategies to 
improve the stability of multimodal fusion on classifica-
tion tasks such as graph pretraining [11, 14], attention 
mechanisms [33] or convolutional feature extraction of 
the language representation [34].

Finally, we explore the learned latent embeddings rep-
resentations of the MolPROPGATv2-ChemBERTa-2-77  M-MLM 
model by projecting the latent embeddings 
onto a 2D space using UMAP [44] (Fig.  2, 3, 4). 
For the ESOL regression task, we find that the 
MolPROPGATv2-ChemBERTa-2-77  M-MLM model (Fig.  2A) is 
able to learn molecular representations that are well 

separated in the 2D space as compared to the GATv2 
(ablated) (Fig.  2B and ChemBERTa-2-77  M-MLM 
(ablated) (Fig.  2C) counterparts. The learned embed-
dings are able to cluster molecules with similar prop-
erties such as the red clusters of molecules with high 
water solubility and the blue cluster of molecules with 
low water solubility. The increased separation of clusters 
for MolPROPGATv2-ChemBERTa-2-77  M-MLM compared to the 
ablated counterparts demonstrates fusion synergy for the 
ESOL regression task (Fig. 2).

In contrast, for the BACE classification task, we find 
that the MolPROPGATv2-ChemBERTa-2-77  M-MLM model 
(Fig.  3A) is unable to learn molecular representations 
that are well separated in the 2D space for the MolPROP 
fusion, GATv2 (ablated), or ChemBERTa-2-77  M-MLM 
(ablated) models (Fig.  3). The learned embeddings are 
unable to cluster molecules with similar properties dem-
onstrated by substantial overlap of the red clusters of 
molecules that are BACE inhibitors and the blue clusters 

Table 4  MolPROP ablation experiments on regression and classification tasks

Model performance is assessed by the metric provided in the header: RMSE = root-mean-square error and ROC-AUC = receiver operating characteristic - area under 
the curve. MolPROP mean and standard deviation of k-models are reported on the test set from 10-fold cross-validation.The columns are the model type, performance 
on the FreeSolv dataset, performance on the ESOL dataset, performance on the BACE dataset, performance on the BBBP dataset, and performance on the ClinTox 
dataset, respectively

MODEL FreeSolv ESOL BACE BBBP ClinTox

# Molecules 642 1128 1513 2039 1478

Metric RMSE RMSE ROC-AUC​ ROC-AUC​ ROC-AUC​

GATv2 (ablated) 2.72 ± 0.14 1.56 ± 0.12 54.6 ± 3.3 51.0 ± 1.5 52.5 ± 1.5

ChemBERTa-2-77M-MLM (ablated) 1.78 ± 0.18 0.81 ± 0.02 68.1 ± 4.9 65.3 ± 4.2 87.2 ± 13.4

MolPROPGATv2-ChemBERTa-2-77M-MLM 1.70 ± 0.09 0.777 ± 0.02 65.6 ± 3.6 66.3 ± 2.5 95.2 ± 3.4

Fig. 2  Latent Embedding Visualization of the MolPROP ESOL Regression Model. The learned neural network embeddings of the ESOL test 
set are projected into 2-dimensional space utilizing the UMAP algorithm for A MolPROPGATv2-ChemBERTa-2-77 M-MLM, B GATv2 (ablated), and C 
ChemBERTa-2-77 M-MLM (ablated) models. All panels display the 1st UMAP dimension as the x-axis and the 2nd UMAP dimesion as the y-axis. The 
2-dimensional UMAP projection is determined with the 10 nearest neighbors, utilizing the Chebyshev distance metric, and a minimum distance 
of 0.25. The color scheme is displayed on the right panel as a colorbar where the scalar values range from red to blue and represent the logarithm 
of water solubility in mol/L. Therefore, red clusters of molecules have high water solubility and the blue clusters of molecules have low water 
solubility
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of molecules that are not BACE inhibitors. The inability 
to effectively fuse information on the BACE classification 
task may be due to the inability of the individal ablated 
models to learn sufficient molecular representations 
(Fig. 3B-C). Previous reports demonstrate that graph pre-
training is an effective strategy to learn molecular molec-
ular representations (Table3) for the BACE [14] and 
BBBP [11] classification tasks. Future work may explore 
graph pretraining strategies to improve the MolPROP 
fusion strategy for classification tasks.

Similar to the ESOL regression task, the 
MolPROPGATv2-ChemBERTa-2-77 M-MLM model is able to learn 
molecular representations that are well separated in the 
2D space for the ClinTox classification task (Fig. 4A). The 
learned embeddings are able to cluster molecules with 

similar properties such as the red cluster of molecules 
that are toxic and the blue cluster of molecules that are 
non-toxic. This learned latent representation demon-
strates improved separation of the red and blue clusters 
in the MolPROP fusion model as compared to the GATv2 
(ablated) (Fig.  4B) and ChemBERTa-2-77  M-MLM 
(ablated) (Fig.  4C) models. Moreover, unlike the BACE 
and BBBP classification tasks, the MolPROP fusion is 
able to further improve the learned molecular represen-
tation from the ChemBERTa-2-77  M-MLM (ablated) 
(Fig.  4C) model. This result suggests that the ability for 
the MolPROP fusion to be effective, there needs to be 
sufficient molecular representations learned from the 
individual ablated models.

Fig. 3  Latent Embedding Visualization of the MolPROP BACE Classification Model. The learned neural network embeddings of the BACE test 
set are projected into 2-dimensional space utilizing the UMAP algorithm for A MolPROPGATv2-ChemBERTa-2-77 M-MLM, B GATv2 (ablated), and C 
ChemBERTa-2-77 M-MLM (ablated) models. All panels display the 1st UMAP dimension as the x-axis and the 2nd UMAP dimesion as the y-axis. The 
2-dimensional UMAP projection is determined with the 10 nearest neighbors, utilizing the Jaccard distance metric, and a minimum distance of 0.25. 
The color scheme is displayed in each panel as a binary blue or red circle. The discrete binary values represent the no inhibition (i.e., blue or 0) 
or inhibition (i.e., red or 1) of human β secretase, BACE

Fig. 4  Latent Embedding Visualization of the MolPROP ClinTox Classification Model. The learned neural network embeddings of the ClinTox 
test set are projected into 2-dimensional space utilizing the UMAP algorithm for A MolPROPGATv2-ChemBERTa-2-77 M-MLM, B GATv2 (ablated), and C 
ChemBERTa-2-77 M-MLM (ablated) models. All panels display the 1st UMAP dimension as the x-axis and the 2nd UMAP dimesion as the y-axis. The 
2-dimensional UMAP projection is determined with the 10 nearest neighbors, utilizing the Jaccard distance metric, and a minimum distance of 0.25. 
The color scheme is displayed in each panel as a binary blue or red circle. The discrete binary values represent non-toxic (i.e., blue or 0) or toxic (i.e., 
red or 1) molecules in clincal trials
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Conclusion
We present a novel suite of models for molecular property 
prediction, MolPROP, utilizing multimodal representation 
fusion of pretrained language and graph neural networks. 
We demonstrate that representation fusion can be benefi-
cial for regression and classification tasks such as experi-
mental water solubility, hydration free energy, lipophilicity, 
and clinical toxicity. However, we also find that represen-
tational fusion can underperform on quantum mechani-
cal atomization energy, inhibitory binding of human β 
secretase, and blood brain barrier penetration. In general, 
this multimodal fusion method performs better on regres-
sion tasks. Ablation experiments and latent embeddings 
visualizations reveal that a sufficient learned representa-
tion by the individual models may be necessary in order 
to achieve performance benefit. Comparison of language 
model pretraining reveals ChemBERTa-2-MLM pretrain-
ing task outperforms the ChemBERTa-2-MTR pretraining 
when tokens are fused to graph representations. We find 
that there can be performance benefits from multimodal 
representational fusion for molecular property predictions, 
and we expect that these improvements will continue to 
benefit from future advancements in molecular language 
models. Moreover, there are additional opportunities to 
improve the algorithmic fusion of molecular graph and lan-
guage representations particularly for classification tasks.
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