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Abstract 

Developing compounds with novel structures is important for the production of new drugs. From an intellectual 
perspective, confirming the patent status of newly developed compounds is essential, particularly for pharmaceuti-
cal companies. The generation of a large number of compounds has been made possible because of the recent 
advances in artificial intelligence (AI). However, confirming the patent status of these generated molecules has been 
a challenge because there are no free and easy-to-use tools that can be used to determine the novelty of the gener-
ated compounds in terms of patents in a timely manner; additionally, there are no appropriate reference databases 
for pharmaceutical patents in the world. In this study, two public databases, SureChEMBL and Google Patents Public 
Datasets, were used to create a reference database of drug-related patented compounds using international patent 
classification. An exact structure search system was constructed using InChIKey and a relational database system 
to rapidly search for compounds in the reference database. Because drug-related patented compounds are a good 
source for generative AI to learn useful chemical structures, they were used as the training data. Furthermore, mol-
ecule generation was successfully directed by increasing and decreasing the number of generated patented com-
pounds through incorporation of patent status (i.e., patented or not) into learning. The use of patent status enabled 
generation of novel molecules with high drug-likeness. The generation using generative AI with patent information 
would help efficiently propose novel compounds in terms of pharmaceutical patents. Scientific contribution: In this 
study, a new molecule-generation method that takes into account the patent status of molecules, which has rarely 
been considered but is an important feature in drug discovery, was developed. The method enables the generation 
of novel molecules based on pharmaceutical patents with high drug-likeness and will help in the efficient develop-
ment of effective drug compounds.
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Introduction
Generative artificial intelligence (AI) is an aspect of AI 
application that has received significant attention, par-
ticularly, as an important tool for drug discovery; con-
sequently, numerous chemical structure-generating AIs 
have been reported [1, 2]. Development of the methods 
implemented by these AIs to learn and generate chemi-
cal structures is one of the ways in which they are cur-
rently evolving; various methods have been proposed, 
including generative adversarial networks [3, 4], recur-
rent neural networks (RNN) [5, 6], and transformers [7, 
8]. The implementation of techniques, such as genetic 
algorithms [9], variational autoencoders [10], and rein-
forcement learning [6, 11, 12], to produce molecules 
with desired properties is another way in which chemical 
structure-generating AIs are evolving. The inclusion of 
properties, such as pharmaceutical activity and absorp-
tion, distribution, metabolism, excretion, and toxic-
ity (ADMET), are important during drug discovery. For 
example, potentially active compounds or compounds 
with desirable ADMET properties can be generated 
based on their prediction scores of machine learning or 
deep learning models using features, such as molecu-
lar properties, fingerprints, and graph descriptors, and 
docking scores obtained by molecular docking against 
target protein structures. In addition, generative AI that 
can simultaneously optimize multiple properties has 
been reported [13, 14].

Although patent information is an important source 
in drug discovery, it is rarely considered in structure-
generating AI. Using generative AI trained with patented 
compound data of tyrosine kinase inhibitors, Subrama-
nian et  al. [15] generated molecules structurally similar 
to FDA-approved drugs, such as erlotinib, by calculating 
their Tanimoto similarities as the property to be opti-
mized. However, it is not known if the generated mole-
cules are patented. Obtaining intellectual property rights, 
particularly substance patents, is important in drug dis-
covery to protect the discovered molecules. Despite its 
importance, patentability is also rarely considered when 
using generative AI. This is likely because validating 
patentability requires specialized equipment, such as the 
use of patent-specific commercial software and databases 
[16]; additionally, automatically authenticating patent-
ability through calculations or other means is difficult.

The recent availability of open patent data, such as 
patent documents provided by Google [17] and pat-
ent–compound information provided by SureChEMBL 
[18], has enabled the development of unprecedented 
approaches to the patenting of compounds. Attempts 
have been made to extract patents related to drug dis-
covery. Falaguera et  al. [19] used patent classification, 
and Subramanian et  al. [15] used keyword searches to 

extract patents related to drug discovery from patents 
published by the United States Patent and Trademark 
Office (USPTO). However, validating the patentability of 
compounds in drug discovery requires a global approach; 
therefore, using only the USPTO patents is insufficient.

This study aimed to create a generative AI that can 
use information on the global patentability of generated 
molecules to direct exploration of chemical space of the 
molecules. To this end, chemical structures included in 
pharmaceutical-related patent documents published in 
the world were collected from open patent sources and 
incorporated into a drug-related patented compound 
database. To generate novel molecules by exploring and 
expanding chemical space of patentable compounds in 
drug discovery, calculation system of properties, which 
represent the patentable status of generated molecules, 
were developed. The properties were computed in the 
form of reward functions and learned in a generative AI.

Materials and methods
Data preparation and integration for drug‑patent database
Drug-related patented compounds were collected to 
develop a reward function that can determine if a gen-
erated molecule is present in drug-related patents. The 
SureChEMBL database (January 2021) was used as the 
source of drug-related patented compounds because it 
consists of 20,000,411 compounds from 4,799,617 pat-
ents, covering patent authorities, the World Intellectual 
Property Organization, and the patent offices of Europe, 
the United States, and Japan.

The extraction of only drug-related patented com-
pounds from the SureChEMBL compounds was neces-
sary because that database contains drug-related and 
non-drug-related patented compounds (e.g., food, fer-
tilizers, dyes, oils, and organic compounds). To extract 
drug-related patented compounds, two types of patent 
classification information were used: International Patent 
Classification (IPC) and Cooperative Patent Classifica-
tion (CPC). Patents classified as A61K (preparations for 
medicinal, dental, or toilet purposes) or A61P (specific 
therapeutic activity of chemical compounds or medicinal 
preparations) were defined as drug-related. Patent num-
bers and compounds described in patents were extracted 
from the SureChEMBL downloadable bulk dataset. 
Because the downloadable dataset did not contain IPC/
CPC information, patent numbers and their IPC/CPC 
codes were extracted from Google Patents Public Data-
sets [20]. The IPC/CPC information was then attached to 
SureChEMBL based on their patent numbers, resulting 
in 13,448,634 compounds in 1,057,881 drug-related pat-
ents. The SQL codes used to retrieve the IPC/CPC infor-
mation from Google Patents Public Datasets are available 
in Additional file 1: Method S1.
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Chemical structures registered in SureChEMBL that 
were erroneous or possibly erroneous were removed. A 
part of compounds in SureChEMBL are registered by 
the automated chemical entity recognition of images of 
the chemical structures in patent documents. The regis-
tered chemical structures that were identified using opti-
cal character recognition (OCR) are denoted as OCR 
structures. Structural errors were observed in some 
OCR structures; for instance, SCHEMBL13574165, reg-
istered as a compound in patent WO-2009153592-A1, 
has an incorrect structure. The original compound has 
a pyrazole ring; however, the ring is broken in the Sure-
ChEMBL entry (Additional file  1: Fig. S1). A recogni-
tion error during the conversion of the structural image 
to the chemical structure likely caused the registration 
of incorrect structures. Although some OCR struc-
tures were correctly recognized, verifying the accuracy 
of all OCR structures was difficult; therefore, all OCR 
structures—2,727,799 structures that are annotated as 
appearing in compound images of patent documents—
were removed from the study to prevent the incorpora-
tion of these inaccuracies. This resulted in a reduction of 
the number of drug-related patented compounds from 
13,448,634 to 10,720,835.

Creation of drug‑related patented compound database
To implement the reward function, which determines if 
the generated structure was included in the 10,720,835 
drug-related patented compounds, a relational database 
of drug-related patented compounds (drug-patent DB) 
and a search system to examine the generated struc-
ture were created (Fig.  1). The chemical structures of 
10,720,835 compounds were standardized and desalted 
using ChEMBL Structure Pipeline 1.0.0 [21]. InChIKeys 
[22], 27-character strings representing the chemical 
structures, were generated without stereochemical layer 
using RDKit 2022.03.2 [23] and stored in the drug-patent 
DB using an SQLite 3.36.0 library to be used in text-based 
search systems. The InChIKey index was created for a 
rapid search. The drug-patent DB includes the chemical 
structures of drug-related patented compounds in the 
form of InChIKeys and their SureChEMBL entry iden-
tifiers, which are easily connected to the SureChEMBL 
information (e.g., the original chemical structures and 
patent numbers).

Preparation of training data for RNN
ChemTSv2 software was used for chemical structure 
generation because it can easily incorporate user-
defined reward functions [24]. ChemTS generates 
molecular structures using an RNN trained on SMILES 

[25] strings and explores structures using Monte Carlo 
tree search (MCTS) [26] with the desired properties 
defined as a reward function [12, 13]. Structures in 
databases, such as ChEMBL [27] or ZINC [28], can be 
used as learning sources for RNN; however, the struc-
tures of drug-related patented compounds were used 
to learn a more specific RNN for patented compounds 
(patent RNN) in this study. Because 10,720,835 com-
pounds were surplus to the requirement for RNN train-
ing, approximately 250,000 compounds were selected 
for this purpose. The training data for the patent RNN 
were extracted from the drug-patent DB using the fol-
lowing procedure: First, five million compounds were 
randomly selected from the DB. Subsequently, com-
pounds that were not appropriate for training, such as 
those lacking SMILES, having no ring, and containing 
non-drug-like elements (e.g., metals and isotopes) and 
substructures (Additional file  2), were removed. Com-
pounds consisting of multiple components were then 
desalted using the KNIME RDKit, leaving only mol-
ecules of one component. Thereafter, atypical com-
pounds, belonging to both ends of the distribution of 
molecular properties, such as the number of atoms, 
number of heavy atoms, molecular weight, SlogP, num-
ber of aromatic rings, and fraction of sp3 carbon atoms, 
were removed, resulting in a remaining selection of 
compounds (4,008,514 molecules including 1,177,174 
unique Murcko scaffolds). From these compounds, 
247,738 molecules were randomly selected. The 
selected molecules included 145,443 unique Murcko 
scaffolds. Finally, the structures were standardized 
using the ChEMBL Structure Pipeline and converted 
into canonical SMILES strings (RDKit) to be used as 
training data for the patent RNN model. The training 
data for RNN are available in Additional file 3.

Fig. 1  Overview of this study
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RNN training and parameter optimization
To train the patent RNN model, four parameters—drop-
out rate, learning rate, batch size, and number of hid-
den state dimensions of gated recurrent units—were 
optimized using Optuna [29] to maximize the ratio of 
the chemically interpretable, filter-passed, and unique 
SMILES strings to all SMILES strings generated in 
15 min of molecular generation (see “Generation of mol-
ecules using ChemTS” section for details of the filters 
used). The remaining parameters for training were set 
to default, excluding the length of the sequence for pad-
ding the SMILES tokens, which was the maximum token 
length (109) of the training data. Training was performed 
for 500 epochs, with 10% of the data being used for vali-
dation. Molecular generation during parameter opti-
mization was performed using a reward function that 
always returned a value of one to eliminate the influence 
of the reward function; herein, C was set to 1.0, and the 
other parameters to the default values. The optimization 
resulted in dropout rate, learning rate, batch size, and 
units of 0.1077, 0.000434, 384, and 896, respectively.

Reward functions
To assess patentability when generating molecules, a 
method that determines if the generated compounds 
were included in drug-related patented compounds was 
used. Two reward functions (Rpatent and Rnot-patent), which 
yield opposing results, were defined. For a given gener-
ated molecule x, the reward Rpatent is defined as:

and the reward Rnot-patent is defined as:

When Rpatent is used as the ChemTS reward function, 
ChemTS tries to generate molecules that can be found 
in drug-related patents; when Rnot-patent is used, ChemTS 
tries to generate molecules that are not found in drug-
related patents. To test the baseline performance of the 
models, a random reward function Rrand, which returns a 
random value between zero and one, was used.

Methods used to identify an exact match between two 
compounds
Two types of methods—fingerprint-based and text-
based—were used to identify generated molecules that 
can also be found in the drug-patent DB. These methods 
were implemented through Python scripts using RDKit. 

Rpatent (x) =

{

1 if x is matched to a patented compound in the drug-patent DB
0 if x is not matched to any patented compounds in the DB

Rnot-patent (x) =

{

1 if x is not matched to any patented compounds in the DB
0 if x is matched to a patented compound in the DB

In the fingerprint-based method, the drug-patent DB 
compounds were converted into MinHash fingerprints 
(MHFP6, 2048 bits) [30]. The locality-sensitive hashing 
(LSH) approximate nearest neighbor search using the 
MHFP6 with LSHForestHelper [31] was used to exam-
ine the exact match between query compounds and the 
drug-patent DB compounds. As a baseline, a finger-
print-based search method using Morgan fingerprints 
(radius = 3, 2048 bits) with BulkTanimotoSimilarity func-
tion of RDKit was also used. In the text-based method, 
InChIKeys of the two compounds were compared to 
determine if they were exact matches. Query molecules 
were searched against drug-patent DB using the SQL 
SELECT command in the Python sqlite3 module.

Validity and uniqueness of molecular generation
The validity and uniqueness of molecular generation 
were calculated as follows:

where a valid SMILES string indicates that the gener-
ated SMILES string is interpretable as a molecule by 
RDKit and is not filtered out by ChemTS filters. Notably, 
this “validity” is a combination of “validity” and “filters” 

defined in the benchmarks of molecular generation mod-

els, such as MOSES [32] and Guacamol [33].

Generation of molecules using ChemTS
By adjusting the value of the MCTS exploration param-
eter C of ChemTS, the user can control the way of search; 
particularly, the user can decide to search deeper into 
the chemical space around previously generated struc-
tures or perform a shallower search in a different space. 
Molecular generations using a large C (e.g., 1.0) explore 
new chemical spaces more extensively, whereas those 
using a small C (e.g., 0.1) explore narrower chemical 
spaces more deeply. Six values of C—0.1, 0.2, 0.4, 0.6, 0.8, 
and 1.0—were used in this study. The ChemTS user can 
remove undesired generated molecules using prepared 

Validity =
Number of valid generated SMILES strings

Number of all generated SMILES strings

Uniqueness =
Number of unique generated SMILES strings

Number of all valid generated SMILES strings
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or user-defined filters in various settings. In this study, 
at each generation step, a generated SMILES string was 
removed if it was trapped by at least one of five ChemTS 
filters that filter out (1) molecules with rarely occurring 
molecular patterns based on the frequency of occurrence 
in the PubChem database [12, 34], (2) those that violate 
at least one of Lipinski’s rule of five [35], (3) those that 
contain radicals, (4) those with a synthetic accessibility 
score [36] ≥ 3.5, and (5) those with a ring size > 6. Mol-
ecules removed by the filters were not used in reward 
calculations. At each C setting, molecular generation 
was performed in triplicate. Each run was executed for 
24 h using a GPU (Nvidia Quadro RTX 8000) and at least 
250,000 valid and unique molecules were generated.

Visualization of chemical space
The chemical space of the generated molecules was vis-
ualized using a uniform manifold approximation and 
projection (UMAP) that projects close points in a high-
dimensional space onto close points in a low-dimensional 
space [37]. UMAP-learn 0.5.3 was used [38] with a Jac-
card metric to transform the 2048-bit Morgan fingerprint 
(radius = 2) arrays of compounds into two-dimensional 
components (UMAP components 1 and 2). To show the 
chemical space of patented pharmaceutical compounds, 
500,000 molecules randomly selected from the drug-pat-
ent DB were included in the calculation.

Analysis of generated molecules
Structural similarities between the generated molecules 
and the molecules in the drug-patent DB were calcu-
lated as the Tanimoto coefficient of Morgan fingerprints 
(radius = 2, 2048 bits) using RDKit. The quantitative esti-
mate of drug-likeness (QED) [39] values of the generated 
molecules were calculated using RDKit.

Results and discussion
Selection of a method that can identify an exact match
The computation times for the matching of 10,000 mol-
ecules randomly selected from SureChEMBL with 
1,000,000 molecules randomly selected from the drug-
patent DB using the Morgan, MHFP6, and InChIKey 
methods were 3.8  h, 4.1  min, and 7.9  s, respectively 
(Fig.  2). The time required for preparing the reference 
dataset, such as creating the LSH forest, SQL data-
base, and SQL index, was excluded from the computa-
tion time. Text-based InChIKey was the fastest method, 
matching the compounds approximately 1733 times 
faster than the Morgan fingerprint-based method. The 
speed of the text-based InChlKey was sufficient for prac-
tical use in ChemTS. Although the MHFP6 method was 
approximately seven times faster than the Morgan finger-
print method, it was slower than the InChlKey method 

and required a large amount of memory. Therefore, the 
InChIKey method was used in the reward function to 
identify exact matches between two compounds.

Creation of patent RNN models for molecular generation
After optimizing the ChemTS hyperparameters for train-
ing, the optimized patent RNN model generated mol-
ecules containing 47.5% filter-valid and unique SMILES 
strings within 15  min. In comparison, molecular gen-
eration was performed using the ChemTS ZINC RNN 
model trained with commercial compounds extracted 
from the ZINC database. The filter-valid and unique 
SMILES rate was 38.2% for the ChemTS ZINC model, 
suggesting that the patent RNN model could generate 
valid molecules more efficiently than the ChemTS ZINC 
model. A detailed analysis of the performance of AIs gen-
erating a large number of molecules is described in the 
following section.

Molecular generations using the patent RNN model
To evaluate the ability to generate molecules independ-
ent of the reward function, the validity and uniqueness 
of ChemTS using the patent RNN model with a random 
reward function Rrand in a C = 1.0 setting, were assessed. 
The first 250,000 valid and unique molecules generated 
using the patent RNN were compared with those gener-
ated using the ZINC RNN model. The average validity 
and uniqueness of the patent RNN model were 0.45 and 
0.84, respectively; those of the ZINC RNN model were 

Fig. 2  Calculation times for the identification of exact matches 
using three methods. Searches for 10,000 query compounds were 
performed against 1,000,000 drug-related patented compounds. The 
search time is shown in the log scale
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0.39 and 0.92, respectively. These results showed that the 
performances of the patent RNN model was comparable 
to that of the ChemTS ZINC RNN model for the genera-
tion of valid and unique molecules.

The patented-compound-generating ability of the pat-
ent RNN model was evaluated. The number of patented 
compounds generated by the patent RNN model that 
could be found in the drug-patent DB was 2.6-fold higher 
than those generated by the ZINC model (Fig. 3a). This 
result indicates that the patent RNN model was better 
suited for generating drug-related patented compounds. 
However, the drug-related patented compounds gener-
ated by the patent RNN model represented a small per-
centage (2.6%) of the 250,000 molecules.

Reward functions
The effect of reward functions on the generation of drug-
patent DB molecules were examined by comparing the 
number of drug-patent DB molecules generated by the 
RNN model using the Rpatent reward function with that 
of the RNN model using Rnot-patent. Under all conditions 
of C, the number of drug-related patented compounds 
generated using Rpatent was higher than that generated by 
Rnot-patent (Fig. 3b). Furthermore, the number of patented 
compounds generated using Rpatent was higher than that 
generated by the random reward function Rrand; addi-
tionally, the number of patented compounds generated 
by Rnot-patent was lower than that generated by Rrand, indi-
cating that Rpatent and Rnot-patent performed as intended. 
When Rnot-patent was used as the reward function, the 

number of generated drug-related patented compounds 
increased as the value of C increased. The larger the value 
of C, the larger the variety of scaffolds generated, and the 
more likely the compounds generated using Rnot-patent are 
going to be patented.

Chemical space of generated molecules
With regard to the structural fingerprints, the chemical 
space of the molecules generated using Rpatent and Rnot-

patent was compared with that of the compounds in the 
drug-patent DB. The chemical space of most molecules 
generated using Rpatent was distributed within that of the 
drug-patent DB compounds, particularly in the region 
indicated by the dense gray dots where the drug-patent 
DB compounds were abundant (Fig.  4a and Additional 
file 1: Fig. S2). Therefore, although the 250,000 molecules 
generated using Rpatent do not cover the entire chemical 
space of the drug-patent DB compounds, molecules cor-
responding to a significant proportion of the space were 
generated. Collectively, the results shown in Figs. 3b and 
4a indicate that most of the 250,000 compounds gener-
ated using Rpatent were in the chemical space of the drug-
patent DB compounds; additionally, more than 10,000 of 
the generated compounds matched the 10,720,835 drug-
patent DB compounds, regardless of the value of C. How-
ever, most of the molecules generated using Rnot-patent and 
C = 0.1 were distributed in the region that was not occu-
pied by the drug-patent DB compounds (Fig. 4b). Com-
bining the results of Figs. 3b and 4b indicates that most 
of the 250,000 compounds generated by Rnot-patent and 

Fig. 3  Number of generated molecules matched to the drug-patent DB compounds. Each bar represents the average values of three replicate 
molecular generations. Error bars represent the standard deviation. In each run, the first 250,000 valid and unique molecules that were generated 
were evaluated. a Number of patented compounds generated by the patent RNN model and the ChemTS ZINC RNN model under conditions: 
C = 1.0 and Rrand reward function. These numbers are used as baseline values of patented compound-generations for the RNN models. b Number 
of patented compounds generated by the patent RNN model across varying reward functions. The baseline values of the patent/ZINC RNN models 
are also shown as dashed lines
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C = 0.1 were in the least populated regions of the chemi-
cal space of the drug-patent DB compounds; therefore, 
less than 3000 compounds produced using this method 
matched the drug-patent DB compounds. On the other 

hand, in the C = 0.2–1.0 settings, most of the molecules 
generated using Rnot-patent were distributed in the region 
that was occupied by the drug-patent DB compounds 
(Additional file 1: Fig. S2). In addition, in high values of 

Fig. 4  Chemical space of generated molecules and the drug-patent DB compounds. Molecules generated using Rpatent and Rnot-patent as reward 
functions in a C = 0.1 setting were compared with 500,000 drug-patent DB compounds. The generated molecules using the Rpatent and Rnot-patent 
rewards were shown in orange (a) and blue (b), respectively, and the drug-patent DB compounds were colored gray in the background. The 
chemical space was visualized using UMAP

Fig. 5  Frequency of structural similarities of generated molecules against the drug-patent DB compounds. a Maximum similarities of generated 
molecules using the Rpatent (orange) and Rnot-patent (blue) rewards to the 247,738 drug-patent DB compounds used as training data of the patent 
RNN. b Maximum similarities of generated molecules using the Rpatent (orange) and Rnot-patent (blue) rewards to the drug-patent DB compounds. 
Molecular generation was performed at C = 0.1
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C (0.8 and 1.0), the molecules generated using Rnot-patent 
were distributed in the same region to that was occupied 
by the molecules generated using Rpatent; therefore, rela-
tively large number of patented molecules were found in 
the molecules generated using Rnot-patent.

Novelty of generated molecules
ChemTS generated 250,000 molecules using the pat-
ent RNN model, Rpatent reward function, and C = 0.1; 
however, 946 molecules (0.38%) matched (i.e., similar-
ity = 1) the training data compounds (247,738 drug-
patent DB compounds) for the patent RNN model 
(Fig.  5a). Thus, 99.6% of the generated molecules 
were not included in the training data. The peak of 
the distribution was where the similarity to the train-
ing compounds was between 0.4 and 0.45. Molecules 
similar to the training compounds—similarity of 0.7 
or greater—were also generated at a percentage of 
2.2%. In the other values of C (0.2–1.0), similar results 
were observed (Additional file 1: Fig. S3). When using 
the Rnot-patent reward in C = 0.1 setting, the peak of the 
distribution was where the similarity to the training 

compounds was between 0.3 and 0.35; over 99.9% of 
the generated molecules were similarity of < 0.7 to the 
training compounds (Fig.  5a). Using larger value of C 
with the Rnot-patent reward, the peak of the distribution 
became relatively high (Additional file 1: Fig. S3). In all 
C settings, the peak of the distribution using the Rnot-

patent reward located in lower similarity value than that 
using the Rpatent reward did. Regarding the maximum 
similarity between the 10,720,835 drug-patent DB com-
pounds and the molecules generated by ChemTS, the 
peak of the distribution was where the similarity to the 
drug-patent DB compounds was between 0.5 and 0.55 
for Rpatent and between 0.4 and 0.45 for Rnot-patent in the 
C = 0.1 setting (Fig. 5b). Regarding Rpatent, 21.5% of the 
molecules had a similarity ≥ 0.7, whereas only 0.1% of 
the molecules generated using Rnot−patent had a similar-
ity ≥ 0.7. The differences in the similarity peaks and in 
the rate of generation of molecules that are similar to 
the drug-patent DB compounds are because of the dif-
ferences in reward functions. The fact that the use of 
Rpatent in the reward function generates molecules that 
do not match the drug-patent DB compounds but have 
a very high degree of similarity suggests that it can 

Fig. 6  Examples of generated molecules including an approved drug. A generated molecule matched to an approved drug, diclofenac, 
and generated molecules similar to it are shown. The molecules were generated using the Rpatent reward function. The similarity values to diclofenac 
and the QED values are indicated below the structures. Compounds registered in the drug-patent DB are marked with an asterisk



Page 9 of 11Shimizu et al. Journal of Cheminformatics          (2023) 15:120 	

generate molecules that are not patented but may have 
the desired activity.

Drug‑likeness of generated molecules
The QED for the most molecules generated with the 
Rpatent in all C settings and the Rnot-patent in most C set-
tings was high (Additional file  1: Fig. S4). The QED for 
the molecules generated with the Rpatent reward function 
was distributed in a region of higher values than that for 
the molecules generated using Rnot-patent in each C setting. 
The difference of QED distributions using Rpatent and Rnot-

patent was large particularly in low C settings (C = 0.1 and 
0.2). Using the Rnot-patent reward in the C = 0.1 setting, 
many of the generated molecules were in different chemi-
cal space to that of drug-related patented compounds 
(Figs.  4b and 5b), increasing accidental generation of 
unusual scaffolds as drug and resulted in the wide distri-
bution of their QEDs. Taken together with the similarity 
results presented in the previous section, the use of the 

Rpatent reward function can generate novel molecules in 
terms of patents with high drug-likeness.

Examples of generated molecules
Herein, three examples of ChemTS-generating mol-
ecules that are structurally similar to approved drugs, 
diclofenac, baricitinib, and brexpiprazole, are discussed. 
These molecules have a similarity of ≥ 0.5 to the approved 
drugs that are not included in the training data of the 
patent RNN model. They were generated by ChemTS 
using the patent RNN model, Rpatent reward function, 
and C = 0.4—the conditions under which most mol-
ecules were matched to the drug-patent DB compounds 
(see Fig.  3b). Diclofenac was generated using ChemTS 
and six of the eight generated diclofenac derivatives were 
included in the drug-patent DB compounds (Fig. 6).

Baricitinib was not generated using ChemTS, but four 
baricitinib analogs were generated and one of them 
was patented (Fig.  7a). Similarly, brexpiprazole was not 

Fig. 7  Examples of generated molecules similar to approved drugs. The generated molecules similar to approved drugs, a baricitinib 
and b brexpiprazole, are shown with their similarity and QED values. The molecules were generated using the Rpatent reward function. Patented 
compounds are marked with an asterisk
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generated by ChemTS, but six brexpiprazole derivatives 
were generated and one of them was patented (Fig. 7b). 
ChemTS can generate molecules similar to approved 
drugs, but the percentage of generated molecules that 
are covered by patents vary from case to case (Fig.  7). 
Regarding drug-likeness, the QED values of the struc-
tural analogs of approved drugs generated by ChemTS 
was case-dependent. The QED values of diclofenac, 
baricitinib and their derivatives were high (Figs.  6 and 
7a). The QED of brexpiprazole analogs was not high; 
however, most of their QED values were higher than that 
of brexpiprazole (Fig. 7b). These results suggest that the 
generative AI developed in this study using Rpatent reward 
functions can generate non-patented molecules with 
favorable drug-likeness properties.

Conclusion
A generative AI that constructs molecules by consid-
ering their patentability was developed. To consider 
patentability, two reward functions, Rpatent and Rnot-pat-

ent, were defined utilizing a method to determine if the 
generated molecules are compounds in drug-related 
patents. The compounds in drug-related patents were 
extracted from open data and stored in the drug-pat-
ent DB, which were also used as the training data of the 
generative AI (ChemTS). ChemTS, with a drug-related 
patent RNN and Rpatent reward function, enables mol-
ecule generation with the consideration of patentability. 
Results showed that compounds structurally similar to 
the approved drugs could be generated without being 
included in the drug-patent DB. By changing the drug-
patent DB used in this study to a database of patented 
compounds in specific fields, such as agriculture and 
organic materials, one can use the model for molecu-
lar generation in other fields. However, this study 
only considered the presence of the compounds in the 
drug-patent DB and not if they are patentable in the 
true sense of the word. Despite these limitations, the 
patent-aware molecular generation method developed 
in this study, in combination with activity and ADMET 
predictions, is expected to improve drug discovery 
capabilities through multi-objective optimizations that 
account for patentability.
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