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Abstract 

Molecular descriptors characterize the biological, physical, and chemical properties of molecules and have long been 
used for understanding molecular interactions and facilitating materials design. Some of the most robust descriptors 
are derived from geometrical representations of molecules, called 3-dimensional (3D) descriptors. When calculated 
from molecular dynamics (MD) simulation trajectories, 3D descriptors can also capture the effects of operating condi-
tions such as temperature or pressure. However, extracting 3D descriptors from MD trajectories is non-trivial, which 
hinders their wide use by researchers developing advanced quantitative-structure–property-relationship models 
using machine learning. Here, we describe a suite of open-source Python-based post-processing routines, called 
PyL3dMD, for calculating 3D descriptors from MD simulations. PyL3dMD is compatible with the popular simulation 
package LAMMPS and enables users to compute more than 2000 3D molecular descriptors from atomic trajectories 
generated by MD simulations. PyL3dMD is freely available via GitHub and can be easily installed and used as a highly 
flexible Python package on all major platforms (Windows, Linux, and macOS). A performance benchmark study used 
descriptors calculated by PyL3dMD to develop a neural network and the results showed that PyL3dMD is fast and effi-
cient in calculating descriptors for large and complex molecular systems with long simulation durations. PyL3dMD 
facilitates the calculation of 3D molecular descriptors using MD simulations, making it a valuable tool for cheminfor-
matics studies.
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Graphical Abstract

Background
Molecular dynamics (MD) simulations are used to 
study the physical and chemical properties of materi-
als [1]. There are many software and packages for per-
forming MD simulations, including LAMMPS [2, 3], 
AMBER [4]Click or tap here to enter text., GROMACS 
[5], CHARMM [6], Click or tap here to enter text.DES-
MOND [7], Materials Studio [8], NAMD [9], and Quan-
tumATK [10]. LAMMPS is one of the most widely used 
open-source packages for MD simulations, attracting 
particular interest in the scientific research community 
due to its stability, flexibility, functionality, and respon-
sive community support [1, 2, 11].

Although scientific studies and the development of 
novel materials have benefited from MD simulations 
using LAMMPS, the computational cost of atomistic 
methods still limits the size and time scale of the mate-
rials and processes that can be studied. In recent years, 
with the development of artificial intelligence, signifi-
cant interest has arisen in machine learning (ML) as a 
powerful tool for the design and discovery of materials. 
This approach to predicting material properties is called 
quantitative-structure–property-relationship (QSPR) 
modeling and is becoming an essential technology in a 
wide variety of research fields because of its computa-
tional efficiency, scalability, robustness, and predictive 
ability [12–14].

QSPR modeling is building mathematical relationships 
between material properties and molecular descriptors 
of the molecules that compose that material. Molecular 
descriptors are quantitative representations of physical, 
chemical, or topological characteristics of molecules that 
summarize our knowledge and understanding of molecu-
lar structure and activity from different aspects [15, 16]. 

Molecular descriptors play a fundamental role in chem-
istry, pharmaceutical sciences, environmental protection 
policy, health research, and quality control. QSPR models 
based on molecular descriptors have been widely used 
in pharmaceutical [17, 18] industries and predicting the 
biological [19] and physiochemical [20–23] of molecules.

There are currently thousands of molecular descriptors, 
which can be classified into three broad categories: 1D, 
2D, and 3D descriptors, where D stands for dimension(s). 
Simple molecular descriptors derived by counting atom 
types or structural fragments in the molecule are called 
constitution or 1D descriptors. Descriptors derived 
from algorithms applied to a topological representation 
(molecular graph) are called topological or 2D descrip-
tors. Lastly, there are molecular descriptors derived from 
geometrical representations of molecules called geomet-
ric or 3D descriptors [24]. A descriptor can be simple, 
like molecular volume, which encodes only one feature 
of a molecule, or can be complex, like GETAWAY [25], 
which encodes multiple features—geometry, topology, 
and atom-weights assembly of a molecule.

Various open-source and proprietary software pack-
ages have been developed to calculate descriptors, 
including PaDEL [26], BlueDesc Dragon [27], RDKit [28], 
CDK [29], Cinfony [30], Chemopy [31], ChemDes [16], 
BioJava [32], BioTriangle [33], Bioclipse [34], Propy [35], 
PyDPI [36], RepDNA [37], CDK-Taverna [38], Protr/Pro-
trWeb [39], JCompoundMapper [40], ChemmineR [41], 
and Rcpi [42]. In these packages, a molecular structure 
must be provided to calculate descriptors for a given 
molecule. The most common format of input for descrip-
tor calculations is Simplified Molecular-Input Line-Entry 
System (SMILES) [43].
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Although SMILES is easy and fast for calculating sim-
ple 1D and 2D descriptors by simple operations such as 
counting atom types or chemical fragments, it does not 
contain the information necessary for calculating 3D 
descriptors, such as the time-dependent geometries of 
molecules. For calculating 3D descriptors, the available 
molecular file formats include Sybyl MOL2 files (.mol,.
ml2, mol2) by Tripos, Inc., Sybyl Molfiles (.sm2) by Che-
mOffice, CambridgeSoft Corp., Multiple SD files (.sdf ) by 
Molecular Design Ltd., HyperChem files (.hin) by Hyper-
cube, Inc., MacroModel files by Schrodinger [24]. These 
files contain geometric information for one molecule and 
one time instance, so the descriptors are calculated for 
only a single molecule in a given configuration.

In contrast, MD simulations provide geometric infor-
mation for multiple molecules and time frames. However, 
this information cannot be readily used by the currently 
available packages for calculating 3D descriptors. Specifi-
cally, with existing packages, the geometric information 
for each molecule at each timestep must be converted 
into the file format required by each package, resulting 
in the generation of many unnecessary files and compu-
tational inefficiency. In addition, most existing packages 
focus on calculations of simple 1D and 2D descriptors. 
Finally, available descriptor calculation packages do not 
directly accept the file and data structures that are out-
put from typical MD simulations, for example, input data 
files (.lmp) and output trajectory files (.lammpstrj, also 
called dump files) from LAMMPS. Therefore, there is a 
need for a tool specifically oriented to 3D descriptors and 
MD simulations.

Here, this need is addressed by a new Python package, 
PyL3dMD, where Py stands for Python, L for LAMMPS, 
3d for 3-dimensional, and MD for molecular dynamics/
descriptors. PyL3dMD in its current form can calculate 
2066 3D molecular descriptors (from Refs. [13, 25, 44–
79]) directly using the input data and output trajectory 
files from a LAMMPS simulation.

General features of PyL3dMD
Overview of molecular descriptors
PyL3dMD is a robust computational tool capable of cal-
culating more than 2000 3D descriptors [13, 25, 44–79], 
refer to Table 1 for the reference specific types of molecu-
lar descriptors. The currently implemented descriptors 
are categorized into six sets, as summarized in Table  1. 
These six sets of descriptors were chosen to be imple-
mented in PyL3dMD because they have been widely 
utilized in various fields of research, including drug 
design and discovery, and physicochemical, biological, 
and pharmacological properties modeling and predic-
tion of in-silico molecules and materials [12, 13, 18, 19, 
23, 56, 68, 71, 80–84]. The descriptors, which include 3D 

topology [13, 44, 45], 3D connectivity [45–52], geomet-
ric [53–67], GETAWAY [25, 68], CPSA [69, 70], WHIM 
[71–74], RDF [75], 3D-MoRSE [76, 77], and 3D autocor-
relation descriptors (3D Moreau-Broto [78], 3D Moran 
autocorrelation [78], and 3D Geary autocorrelation [78]), 
facilitate the prediction of various physicochemical, bio-
logical, and pharmacological properties of molecules and 
materials.

3D topology descriptors are used to quantify the con-
nectivity of atoms in three-dimensional space. These 
descriptors provide information about the bonds 
between atoms, the topology of the molecular surface, 
and the shape of the molecule [13, 44, 45]. The 3D con-
nectivity indices are used to describe the interatomic 
distance between atoms and the angle between bonds 
[45–52]. Geometric descriptors are used to character-
ize the shape and size of a molecule [53–67]. GETAWAY 
(Geometry, Topology, and Atom-Weights Assembly) 
descriptors are chemical structure descriptors based on 
the structural and electronic properties of a molecule 
[25, 68]. CPSA (Charge Polar Surface Area) descriptors 
are used to quantify the distribution of charge on the 
surface of a molecule. These descriptors are particularly 
useful for studying electrostatic interactions and solva-
tion effects [69, 70]. WHIM (Weighted Holistic Invari-
ant Molecular) descriptors are based on the principle of 
invariance, which means that the descriptors remain the 

Table 1  Summary of the molecular descriptors provided by 
the current PyL3dMD package, with the number of descriptors 
within each descriptor set and type

Density is calculated with all sets of descriptors

Descriptor set Descriptor type Number of 
descriptors

3D Topological/
Connectivity: set1

• 3D Topology descriptors [13, 44, 
45]
• 3D Connectivity indices [45–52]

18
9

Geometric: set2 • Dipole moment [53]
• Inertia index [13, 54]
• Gyration index [13, 55]
• Gravitation index [13, 56]
• Molecular volume [13, 57]
• Shadow indices [13]
• Plane of best fit score [58]
• Miscellaneous [13, 59–67]

4
16
15
6
2
3
2
41

GETAWAY: set3 • GETAWAY [25, 68] 697

CPSA: set4 • CPSA [69, 70] 30

WHIM: set5 • WHIM [71–74] 112

Miscellaneous: set6 • 3D RDF descriptors [75]
• 3D-MoRSE [76, 77]
• 3D Moreau-Broto autocorrelation 
[78]
• 3D Moran autocorrelation [78]
• 3D Geary autocorrelation [78]

240
240
210
210
210

Property: all • Density (system property) [79] 1
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same even if the molecule is transformed or rotated. They 
are based on statistical indexes calculated by projecting 
atoms along principal axes. WHIM descriptors capture 
3D information regarding molecular size, shape, sym-
metry, and atom distribution with respect to invariant 
reference frames [71–74]. 3D radial distribution func-
tion (RDF) descriptors are based on the radial distribu-
tion function, which describes the probability of finding 
an atom at a certain distance from another atom. 3D RDF 
descriptors are based on the radial distribution function 
and provide information about the spatial distribution of 
atoms and their environments [75]. 3D-MoRSE (Molecu-
lar Surface Electrostatics) stands for 3D-molecule repre-
sentation of structures based on electron diffraction and 
these descriptors are based on the electrostatic poten-
tials of the molecular surface [76, 77]. The 3D-MoRSE 
descriptors translate the 3D coordinates into a molecular 
code with a modified equation used in electron diffrac-
tion studies for preparing theoretical scattering curves 
[76, 77]. These descriptors provide information about the 
charge distribution on the surface of a molecule and its 
three-dimensional shape. Autocorrelation descriptors are 
based on the autocorrelation of physicochemical proper-
ties (charge, mass, van der Waals volume, electronega-
tivity, polarizability, ionization potential, and electron 
affinity) of atoms within a molecule [78]. These descrip-
tors provide information about the local molecular envi-
ronment and its correlation with the physicochemical 
properties of atoms. The complete descriptor list is given 
in the manual provided in supplementary materials. The 
governing equations for the descriptors are also provided 
in the manual. All descriptors currently implemented in 
PyL3dMD were developed in previous studies [13, 25, 
44–79],

Implementation
PyL3dMD is written in Python, which is readily available 
and allows for readable code. PyL3dMD uses argparse to 
provide a command-line interface to pass inputs to the 
package, which allows multiple optional input param-
eters to be passed efficiently and for automation using 
shell scripts. PyL3dMD is coded in a module-oriented 
manner, where each set of descriptors is represented by 
a module. Furthermore, each module contains a driver 
function/module used to calculate the respective set of 
descriptors. This allows PyL3dMD not only to be used 
through the command line but also to be easily integrated 
into scripts for user-oriented analyses. Example scripts 
are provided in the supplementary materials. Owing to 
the modular structure of PyL3dMD, extensions or new 
descriptors can be implemented quickly and easily with-
out time-consuming and complex modifications to the 
source code. To add a new descriptor, users only need 

to create a new function for that descriptor and call it in 
the main module. This provides users with the flexibility 
to either add a new descriptor that is currently unavail-
able in PyL3dMD or calculate a single descriptor from 
the existing six descriptor types, specifically for large 
systems. PyL3dMD has the following dependent Python 
packages: Math, Pandas, NumPy, Multiprocessing, 
Time, and Numba, which must be installed before using 
PyL3dMD. All these packages are by default installed 
with Anaconda and therefore PyL3dMD does not require 
any third-party package to be installed. The Numba pack-
age, which translates Python functions into optimized 
machine code at runtime, is used wherever it is possible 
to significantly increase the computation speed. Numba 
generates highly optimized machine code that executes 
much faster than the equivalent pure Python code [85].

An important consideration is the efficiency of the cal-
culation, especially when the system consists of many 
molecules and trajectories containing data from many 
time frames. For computational efficiency, PyL3dMD 
uses matrix algebra wherever possible, rather than for/
while loops. PyL3dMD can perform parallel computation 
for faster estimation of descriptors for all timesteps and 
molecules. Therefore, it can be used to calculate descrip-
tors for any system size (number of atoms/molecules) 
irrespective of the complexity of the molecules. If run on 
desktop computers, PyL3dMD can automatically detect 
the number of cores available in the system and use them 
for multiprocessing.

To calculate descriptors, the PyL3dMD package takes 
four inputs, two of which are mandatory, and two are 
optional, as shown in Fig.  1. The two mandatory inputs 
are the LAMMPS input data and output trajectory files, 
with their file locations. The LAMMPS input data file 
must have Masses, Atoms, Bonds, Angles, and Dihedrals 
sections, including charges of the atoms. The LAMMPS 
trajectory file must have atom id, molecule id, atom type, 
x (or xu ), y (or yu ), and z (or zu ). Here, x , y , and z are 
coordinates of wrapped atoms, whereas xu , yu , and zu 
are coordinates of unwrapped atoms. The optional inputs 
are (1) the integer number of cores (default is maximum 
available cores/processors) for multiprocessing, and (2) 
the set number for the descriptors the user would like to 
calculate (default is all sets of descriptors). Set numbers 
are defined in Table 1. It is recommended that users pro-
vide this optional input argument for faster calculation of 
molecular descriptors.

On successful execution, PyL3dMD generates a 
comma-separated values (csv) file for each molecule in 
the simulation box consisting of molecular descriptors 
for all time frames. The naming convention for these csv 
files is molecule_molID.csv, where the molID is 
the ID of a molecule obtained from the LAMMPS output 
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trajectory file. This way users have freedom to further 
post-process the calculated descriptors as needed, for 
example, averaging descriptors over time or multiple 
molecules.

Advantages and limitations
PyL3dMD is an intelligent parsing of the LAMMPS input 
data and output trajectory files. The order of sections 
(atoms, bonds, angles, dihedrals, etc.) in the LAMMPS 
input data file can vary. PyL3dMD automatically detects 
each section to parse relevant information. In addition, 
LAMMPS allows users to export/write many param-
eters in any order (that is, in any column) to the output 
trajectory file. PyL3dMD automatically determines the 
location of the parameters relevant to the calculation 
and sorts the coordinates using atom and molecule IDs, 
which allows users flexibility in the format of the output 
from LAMMPS.

Another feature of PyL3dMD is that it works with any 
simulation box size with periodic boundaries, and for 
any box shape for which all sides of the box are perpen-
dicular to one another, e.g., cubic and orthogonal boxes. 
LAMMPS allows users to export wrapped or unwrapped 
x , y , and z atom coordinates. Although most 3D descrip-
tors are calculated using unwrapped coordinates of 
atoms, if needed, PyL3dMD automatically converts 
wrapped coordinates to unwrapped coordinates before 
any calculations.

Moreover, PyL3dMD can be used with either united-
atom (UA) or all-atom (AA) representations. The UA 
representation combines a group of atoms into a single 
"united atom" to simplify the simulation; the AA rep-
resentation, on the other hand, treats each atom in a 
molecule individually, including hydrogen atoms. The 
package adds or removes hydrogen atoms depending on 
the descriptor type. In addition, PyL3dMD can be used 
for systems with single or multiple molecule types. For 
instance, PyL3dMD can calculate descriptors for a solu-
tion containing both polymer and solvent molecules [21].

Lastly, PyL3dMD itself does not limit the size of the 
system (number of atoms/molecules) for the descriptor 
calculation but the maximum size that can be handled 
efficiently is dependent on the computing resources used.

Regardless of the many advantages, PyL3dMD has sev-
eral limitations currently.

First, since the PyL3dMD package requires bond, angle, 
and dihedral information to calculate 3D topological 
and connectivity descriptors, the package only works for 
force fields that have this information in the LAMMPS 
input data file. The package has been tested with the 
force fields OPLS [86] CVFF [87], and TraPPE-UA [88] 
but should work for most non-reactive force fields that 
have Masses, Atoms, Bonds sections in the LAMMPS 
input data file and have id (ID of atoms), mol (ID of mol-
ecules), type (type of atoms), and 3D coordinates ( x , y , z ) 
in the LAMMPS output trajectory file. PyL3dMD in its 
current form does not work for reactive force fields such 

Fig. 1  Overview of the PyL3dMD package and its usage
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as ReaxFF [89]. This is because simulations using reac-
tive force fields (e.g., ReaxFF [89]), atom connectivity is 
not explicitly defined in the data file, but changing over 
time, this makes it more complicated and computational 
demanding in descriptor calculations. In the future ver-
sions of PyL3dMD, we will overcome this difficulty and 
incorporate descriptor calculations for simulations with 
reactive force fields.

Second, PyL3dMD assumes that the atom style is “full” 
when importing the atom section from the LAMMPS 
input data file, where “full” is one of the atoms styles for 
describing the information of each atom in the data file in 
LAMMPS following the order of “atom ID, molecule ID, 
atom type, charge, x, y, z”.

Third, PyL3dMD assumes that the LAMMPS simula-
tion is using the “real” unit system (mass = grams/mole, 
length = Angstroms, time = femtoseconds, energy = kcal/
mole, temperature = Kelvin, pressure = atmospheres, 
electric field = volts/Angstrom, density = gram/cm3). 
However, this may not be an issue for QSPR modeling 
that is based on the relative values of descriptors for dif-
ferent molecules. The only system property that is cal-
culated is density, so the units of density may need to be 
converted.

Fourth, PyL3dMD assumes that all the sides of the 
simulation box are perpendicular to one another when 
unwrapping the coordinates if the user provides wrapped 
coordinates. If users provide unwrapped coordinates, 
PyL3dMD will work for any shape of the simulation box.

Finally, since this package calculates descriptors for 
each molecule separately over multiple timesteps, it 
might require a large amount of memory to store arrays, 
lists, and dictionaries. If a system (simulation box) is very 
large and the LAMMPS output trajectory file consists of 
over  thousands of timesteps, the package should be run 
on a high-performance computing (HPC) cluster for 
faster computations. For such cases, PyL3dMD will work 
on a regular personal computer but might take longer 
computational time.

Example usage
Fig. 2 shows an example of a Python script that uses the 
PyL3dMD package for calculating descriptors for a sam-
ple model with parallel computations with 16 CPU pro-
cessors. The sample LAMMPS data file sample.txt 
and dump file sample.lammpstrj are provided on 
our GitHub page.

Application
As an example of the application of PyL3dMD, a Mul-
tiple-Input Multiple-Output (MIMO) neural network 
(NN) was developed for predicting temperature-depend-
ent density and viscosity of wide variety of complex 

hydrocarbons using the molecular descriptors calculated 
from the PyL3dMD. The experimental dynamic viscos-
ity and density of the hydrocarbons (C8 to C50) used 
here were obtained from the American Petroleum Insti-
tute (API) Research Project 42 [90] over a wide range 
of temperatures (0  °C to 135  °C). Figure  3 presents an 
overview of the experimental data and the distribu-
tion of properties. The molecular weights of the hydro-
carbons range from 110.2 to 703.3  g/mol, the densities 
from 0.67 to 1.12  g/cc, and the viscosities from 0.29 to 
2.00 × 104 mPa· s. This wide range of viscosity for hydro-
carbons with C8 to C50 indicates the complexity in the 
structure of these hydrocarbons. In total, 1248 data 
points for 305 hydrocarbons were used to develop the 
NN. These 1248 data points were randomly divided into 
three subsets: 70% to train the NN (training dataset), 
15% to tune hyperparameters and architecture of the NN 
(validation dataset), and 15% to assess the performance 
of the final NN (test dataset) after it has been trained and 
tuned.

In our previous study [91], which was conducted to 
compare the predictive capability of molecular descrip-
tors calculated from MD simulations and SMILES code, 
we conducted MD simulations of these hydrocarbons. 
The model system (simulation box) for each hydrocar-
bon consisted of around 5000 atoms (volume of 5.0 nm3). 
The interactions between atoms were described using 
the OPLS forcefield [86, 92]. Each system was simulated 
in LAMMPS for 3.0 ns and the trajectories of the atoms 
in all molecules were stored every 1000 fs. This resulted 
in a LAMMPS output trajectory file consisting of 3001 
time steps. However, only the last 50% timesteps (from 
the 1500th to the 3001st timesteps) were used to calcu-
late molecular descriptors using PyL3dMD. Then, the 
descriptors were averaged for developing a MIMO NN.

In our study [91], we also presented a machine learn-
ing approach to develop highly predictive models with 
fewer, simpler, and easily interpretable models. The same 
machine learning approach was used to select the best 
molecular descriptors from all the descriptors calcu-
lated using PyL3dMD to develop the NN. This approach 
selected the molecular descriptors getawayHGM, lk, 
molvolume, and phi4 for further developing NN 
based on their high correlation with density and vis-
cosity, and less collinearity between these descriptors. 
Here, getawayHGM is the geometric mean of the lever-
age magnitude, lk is the Kuhn length, molvolume is 
the volume of molecule, phi4 is the folding profile 4. 
Among these, getawayHGM is a GETAWAY descrip-
tor, while lk, molvolume, and phi4 are geometric 
descriptors. All the calculated molecular descriptors for 
all hydrocarbons can be accessed from our GitHub page. 
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Readers are referred to Ref. [91] for more details about 
the MD simulations and machine learning approach.

The model architecture was defined to have multiple 
dense layers with ReLU activation. It was designed to 
have multiple input nodes representing the predictor/fea-
ture variables and multiple output nodes representing the 
target variables (density and viscosity). The network was 
compiled using the Adam optimizer and mean squared 
error as the loss function for each output, tracking mean 
absolute error (MSE) as a metric. Then, the network was 
trained using the training dataset. During the training 

step, MSE was minimized by adjusting the weights and 
biases of network. This was achieved through forward 
propagation and backpropagation, iteratively updat-
ing the model parameters using Adam optimizer. Then, 
using Bayesian optimization, the hyperparameters of 
NN, including number of neurons, hidden layers, activa-
tion functions, learning rate, epoch, and batch size were 
tuned to improve the model’s performance and eliminate 
the overfitting.

Finally, the performance of the final network was evalu-
ated using the R-squared (R2) value, calculated for each 

# -*- coding: u�-8 -*- 

from pyl3dmd import pyl3dmd 
if __name__ == "__main__": 

""" Define Input Parameters. """ 
# Mendatory Inputs 
loca�onDataFile = 'C:/Usage/RunFromLocalComputer'   # Loca�on of LAMMPS data file 
loca�onDumpFile = 'C:/Usage/RunFromLocalComputer' # Loca�on of LAMMPS dump file 
datafilename = 'sample.txt'                                                    # Name of LAMMPS data file 
dumpfilename = 'sample.lammpstrj'                                    # Name of LAMMPS dump file 

# Op�onal Inputs 
numberofcores = 16       # Number of processors for parallel compu�ng (default is maximum) 
whichdescriptors = 'set1'         # Specify which set of descriptors to calculate (defualt is 'all) 

""" Calculate all descriptors """ 
datafile = loca�onDataFile + '/' + datafilename                   # LAMMPS data file 
dumpfile = loca�onDumpFile + '/' + dumpfilename           # LAMMPS dump file 

######################## WITHOUT OPTIONAL INPUTS ############################### 
# PyL3dMD will find and use maximum available processors for parallel compu�ng 
# and calculate all descriptors if nothing is specified 
# program = pyl3dmd.pyl3dmd(datafile, dumpfile) 

########################## WITH OPTIONAL INPUTS ################################# 
# PyL3dMD will use the defined number of processors for parallel compu�ng 
# and calculate the defined set of descriptors if any is specified 
program = pyl3dmd.pyl3dmd(datafilename, dumpfilename, whichdescriptors='set1',                        

numberofcores=16) 

# Start the calcula�on 
program.start()

Fig. 2  Screenshot of a sample Python script of using PyL3dMD
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hydrocarbon property in the training, validation, and test 
datasets. The Average Variance Inflation Factor (VIF) 
was also calculated to check for multicollinearity among 
the input variables. The average VIF for the selected 
descriptors was 5.2, which suggests that the predictors 
do not have concerning multicollinearity. Figures  4a, b 
show the model predicted and actual experimental den-
sity and viscosity values over a wide temperature range. 
The predicted properties for the training, validation, and 
test datasets are shown as blue, orange, and green cir-
cles, respectively. From the statistics in Fig. 4a, b, the NN 
performed exceptionally well with only four descriptors. 
Furthermore, the NN was able to predict temperature-
dependent properties without incorporating tempera-
ture as one of the predictors. This emphasizes the benefit 

of developing models based on dynamic 3D descriptors 
calculated from MD simulations, as opposed to static 
descriptors calculated using SMILES codes.

After evaluating the performance of the developed 
NN, Local Interpretable Model-Agnostic Explanations 
(LIME) were utilized to decipher the predictions made 
by the network. LIME, an ML technique, explains pre-
dictions of machine learning based models for individual 
data points [93]. By computing the mean LIME values of 
normalized (normalization is very important for side-by-
side comparison) features, we got a better understanding 
of how important each feature is in predicting the density 
and viscosity of hydrocarbons. These average LIME val-
ues, taken from all 1248 data points, are shown in Fig. 5a, 
b for density and viscosity. This gives us a picture of 

Fig. 3  Overview of the experimental data used to generate the MIMO NN. This shows the distributions of temperature, molecular weight, density, 
and viscosity of the hydrocarbon data used to develop the NN. The dash lines show the quartiles of the distributions

Fig. 4  Experimental and model predicted (a) density and (b) viscosity for the training (blue), validation (orange), and test (green) datasets
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how each feature influences the output predictions. The 
higher the LIME value, the more influence a feature has. 
On the other hand, a lower LIME value means a feature 
has less influence. The bar charts show that the folding 
parameter phi4, which quantifies the folding of mole-
cules, had the biggest effect on both density and viscosity 
predictions. Except for the Kuhn length lk, all other fea-
tures were negatively correlated to density and viscosity. 

Performance benchmark
The time required for the code to run is a function of the 
computational resource used (number of cores), system 
size (number of atoms in the simulation box), and the 
duration of the MD simulation (number of time frames). 
The code was tested for a simulation with 10 molecules 
having 20 atoms per molecule (total 200 atoms in the 
simulation box) with 1001 timesteps in the LAMMPS 
output trajectory file. The machine used for this analy-
sis had the following configuration: Intel i7-10700 CPU 
with 8 cores, 16 processor, 32  GB RAM, and Windows 
10 desktop. When multiprocessing with 8 cores was 
used, PyL3dMD took on average 16 min to calculate all 
descriptors whereas a single core took 30  min. Figure  6 
shows the computational time for each set of descrip-
tors calculated individually and all together. The com-
putation time for CPSA descriptors was considerably 
higher than the other sets. This analysis demonstrates 
why it is important to use the optional inputs to elimi-
nate the calculation of unnecessary descriptors. The 
average time taken to calculate each of these descriptors 
can be determined by diving the time shown in Fig. 6 by 

10(#molecules)× 1001(#timesteps) = 10010 . This results 
in a very small computation time (~ 0.18  s using a sin-
gle core and ~ 0.1 s using 8 cores for all descriptors) for a 
molecule.

Then, the same benchmarking analysis was conducted 
for a larger simulation box, more realistic size using 
the same 8 core Windows system. For this benchmark-
ing analysis, the simulation box of around 5000 atoms 
and LAMMPS output trajectory file of 3001 timesteps 
was considered which is same as the simulation box 
size using for 305 hydrocarbons. Windows desktop 
with 8 cores, PyL3dMD took 6.1, 14.8, 34.2, 139.9, 
21.4, 51.0  min in calculating descriptors in the 3D 
Topological/Connectivity (set1), Geometric (set2), 

Fig. 5  The average LIME value for each feature in neural network for (a) density and (b) viscosity. The orange and blue colors represent negative 
and positive relationships, respectively, between a predictor and the response variable. The size of a bar represents the overall importance 
of a predictor

Fig. 6  Computation time for each set of descriptors with 1-core 
(orange bars) and 8-core (blue bars). The number above each 
bar is the computational time in minutes
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GETAWAY (set3), CPSA (set4), WHIM (set5), and 
Miscellaneous (set6) sets, respectively.

Since we had to calculate molecular descriptors for 
1248 MD simulations conducted at multiple tempera-
tures, we used an HPC cluster with 72 CPU cores to 
speed up the computation. With the HPC, we were 
able to calculate molecular descriptors from 1248 large 
LAMMPS trajectory files (around 5000 atoms and 3001 
timesteps) within hours. On average, it took 16.2  min 
for each simulation file of around 800 megabytes. 
The hydrocarbon molecules in the simulations had a 
range of sizes and structures, including n-paraffins, 
branched-paraffins, 1-olefin, branched-olefins, non-
fused ring naphthene, fused ring naphthene, non-fused 
ring aromatic, and fused ring aromatics, and there was 
minimal effect of the molecular structure on compute 
time. This demonstrates the performance of PyL3dMD 
for large and complex molecular systems and confirms 
that PyL3dMD is a versatile tool that can be applied to 
material science studies without scale limitations, while 
also quantifying the effect of computing resources on 
computation speed.

To benchmark the effect of number of cores/proces-
sors on the computational time of all the descriptors, 
we recorded the calculation time with 8, 20, 30, 40, 50, 
60, and 72 processors. This analysis was conducted on 
the simulation box with around 5000 atoms (more spe-
cifically total 4983 atoms and 151 molecules of 33 atoms) 
and LAMMPS trajectory files of 3001 timesteps. The 
recorder time for this simulation box with 8, 20, 30, 40, 
50, 60, and 72 processors is shown in Fig. 7. This results 
in Fig.  7 show we can significantly decrease the com-
putation time by increasing the number of cores for 
processing.

It is important to note that PyL3dMD does not impose 
any inherent limitations on the scale of the molecular sys-
tem being analyzed. It is designed to calculate descriptors 
for simulation data of any size, including data generated 
from long simulation durations, large simulation boxes, 
and many molecules within the simulation box. The 
major factor that affects computation speed is the avail-
ability of computing resources for parallel computation. 
By leveraging parallel computing capabilities, PyL3dMD 
can effectively handle calculations on a large scale. In the 
future, we plan to enhance the coding architecture to sig-
nificantly reduce computation time.

Request
If you identify any issues or have suggestions for improv-
ing PyL3dMD, we welcome you to reach out to us via 
email or GitHub. We value feedback, questions, and 
bug reports, and we are open to receiving them through 
both channels. We also encourage user contributions 
and invite you to submit a pull request on our GitHub 
page. This is particularly important as we aim to expand 
PyL3dMD’s capabilities to calculate descriptors for other 
MD simulation tools.

Conclusions
Currently, there are several commercial and open-
source tools for calculating molecular descriptors, but 
none of them are compatible with MD simulation tools 
such as LAMMPS. Here, an open-source Python-based 
3D molecular descriptors calculation tool, PyL3dMD, 
was developed, which is compatible with the for-
mats of LAMMPS input data and output trajectory 
files. PyL3dMD has been published on GitHub, PyPi, 
and Conda under the GNU General Public License. 
PyL3dMD is a multithreaded tool able to utilize multiple 
CPU cores to increase the efficiency of descriptor calcu-
lations. There are two mandatory inputs (LAMMPS input 
data and output trajectory files) and one optional input 
(number of cores for multiprocessing) for calculating 
more than 2000 3D descriptors. PyL3dMD requires mini-
mal user intervention but can also be easily expanded to 
include more descriptors. The package can be used on all 
major platforms, including Windows, Linux, and macOS, 
via Anaconda. In addition, the PyL3dMD package can 
be easily integrated into custom post-processing scripts. 
To demonstrate the application of molecular descriptors 
calculated from PyL3dMD, we developed and presented 
a multiple-input and multiple-output (MIMO) neural 
network (NN) to predict density and viscosity of hydro-
carbons as functions of temperature. Results and perfor-
mance benchmark show that PyL3dMD is a versatile tool 
that can be applied to material science studies with scale 
only limited by the availability of computing resources.

Fig. 7  Time taken by PyL3dMD to calculate all molecular descriptors 
for different number of cores
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In the future, PyL3dMD could undergo several 
improvements to enhance its functionality. These 
improvements may include increasing its compat-
ibility with various atom styles (e.g., atomic, bond, 
etc.), expanding the existing descriptor pool, opti-
mizing computational efficiency, ensuring compat-
ibility with other MD simulation packages other than 
just  LAMMPS, and integrating ML algorithms to 
facilitate QSPR modeling by utilizing the calculated 
descriptors.

This tool will enable scientific researchers to calcu-
late a wide range of 3D descriptors to quantify molec-
ular chemistry and structure, and ultimately guide the 
design of advanced materials.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13321-​023-​00737-5.

Additional file 1. User Manual for PyL3dMD.
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